8.513 Problem Set \# 1

Problems:

1. (10 pts.) Energy conservation and Poisson bracket

Consider a system described by the generalized equation of motion $\hbar b_{i j}\left(\xi^{i}\right) \dot{\xi}^{j}=\frac{\partial H}{\partial \xi^{i}}$, where $b_{i j}=\partial_{\xi^{i}} a_{j}-\partial_{\xi^{j}} a_{i}$.
(a) Show that the time dependence of a quantity $O\left(\xi^{i}\right)$ is given by

$$
\hbar \frac{\mathrm{d}}{\mathrm{~d} t} O=[O, H]_{\mathrm{cl}}, \quad[A, B]_{\mathrm{cl}} \equiv b^{i j} \frac{\partial A}{\partial \xi^{i}} \frac{\partial B}{\partial \xi^{j}} \quad \text { (generalized Poisson bracket) }
$$

where $b^{i j}$ is the inverse of $b_{i j}: b^{i k} b_{k j}=\delta_{j}^{i}$.
(b) Show that, just like the quantum commutator $[A, B]=-[A, B],[A, B]_{\mathrm{cl}}=-[B, A]_{\mathrm{cl}}$.
(c) Show that the energy is conserved $\mathrm{d} H / \mathrm{d} t=0$.
(Replacing Poisson bracket by quantum commutator allows us to quantize a classical theory)

2. (10 pts.) Effective quantum Hamiltonian of a particle in the first Landau level

For a charge- 1 particle in a 2 D plane with a strong uniform magnetic field B, the motion of the average position (ie the center of the cyclotron orbit) of the particle is described by equations of motion

$$
\dot{x}^{i}=B^{-1} \epsilon^{i j} \frac{\partial V}{\partial x^{j}}, \quad i, j=1,2
$$

where $V\left(x^{i}\right)$ is the potential energy (the Hamiltonian) of the particle. Here $\epsilon^{12}=-\epsilon^{21}=1$ and $\epsilon^{11}=\epsilon^{22}=0$.
(The above equations of motion can all be viewed as the classical equations of motion for a mass m particle magnetic field, but in the $m \rightarrow 0$ limit. In this limit, the coordinate-space classical equations of motion become first order in time derivative. ie the coordinate-space equations of motion becomes a phase-space equations of motion in this limit. In this problem, we also see that knowing phase-space equations of motion and phase-space energy function allows us to obtain phase-space Lagrangian.)
(a) Find the phase space Lagrangian that reproduces the above equations of motion with $V\left(x^{i}\right)$ as the energy (ie the Hamiltonian).
(b) Find the quantum description of the above classical system. (ie find the quantum Hamiltonian operator).
(c) Assume $V\left(x^{i}\right)=\frac{v}{2}\left[\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}\right]$. Find the energy levels of the quantum system obtained in (b).
(Such a quantum description describes the particle in the first Landau level.)
3. (10 pts) Differential form
(a) Let $\left(a_{x}(x, y), a_{y}(x, y)\right)$ be a vector field in 2-dim space (x, y). Let $a=a_{x} \mathrm{~d} x+a_{y} \mathrm{~d} y$ be the corresponding differential 1-form. Let $b=\mathrm{d} a=b_{x y} \mathrm{~d} x \mathrm{~d} y$. Show that

$$
\begin{equation*}
\int_{D^{2}} b=\int_{D^{2}} b_{x y} \mathrm{~d} x \mathrm{~d} y=\oint_{\partial D^{2}} a_{x} \mathrm{~d} x+a_{y} \mathrm{~d} y \tag{1}
\end{equation*}
$$

where ∂D^{2} is the boundary of a disk D^{2} in the 2-dim space.
(b) Let $S^{2}(r)$ be a sphere in 3 -dim space $\mathbb{R}^{3}=(x, y, z)$ of radius r. Let $b=r^{-3}(x \mathrm{~d} y \wedge \mathrm{~d} z-$ $y \mathrm{~d} x \wedge \mathrm{~d} z+z \mathrm{~d} x \wedge \mathrm{~d} y$) be a 2 -form. Show that $\mathrm{d} b=0$ (ie b is a closed 2 -form) away from the origin $(x, y, z)=(0,0,0)$. Calculate $\int_{S^{2}(r)} b$, which should be independent of r. (Hint: for $x=r \sin (\theta) \cos (\phi), y=r \sin (\theta) \sin (\phi), z=r \cos (\theta), \mathrm{d} z=\cos (\theta) \mathrm{d} r-\sin (\theta) \mathrm{d} \theta$, etc.)

4. (10 pts) Semi-classical picture of a quantum spin

Consider a quantum spin- S system described by

$$
\hat{H}=-\boldsymbol{B} \cdot \hat{\boldsymbol{S}}, \quad \boldsymbol{B}=B \boldsymbol{z} .
$$

We like to use the coherent-state approach to obtain the corresponding classical system of the above quantum spin model. We choose $|\boldsymbol{n}\rangle$ to be our coherent states, where $|\boldsymbol{n}\rangle$ is the eigenstate of $\boldsymbol{n} \cdot \hat{\boldsymbol{S}}$ with the maximal eigenvalue S.
(a) Find the phase-space Lagrangian $L(\boldsymbol{n}, \dot{\boldsymbol{n}})$ that describes the classical motion of the unit vector \boldsymbol{n}.
(b) Find the classical equation of motion for \boldsymbol{n}.
(Hint: you may assume $S=1 / 2$ first and guess the results for higher spins.)

MIT OpenCourseWare
https://ocw.mit.edu

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems

 Fall 2021For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

