8.513 Problem Set \# 11

Problems:

1. (20 pts) Realizing and classifying 3d topological insulator using Dirac fermions

 A 3d topological insulator has a symmetry $U_{\text {charge }}^{f}(1) \rtimes Z_{4}^{T} / Z_{2}^{f}$ (ie charge conservation and time reversal symmetry). To obtain a realization of such a topological insulator, we may first construct an one-body gapless Dirac fermion Hamiltonian in real bases, then we add a proper mass term to realizing a 3d topological insulator.(a) Consider a 3d non-interacting fermion system, described by a \boldsymbol{k}-space one-body Hamiltonian

$$
\begin{equation*}
M(\boldsymbol{k})=\boldsymbol{v}(\boldsymbol{k}) \cdot \boldsymbol{\sigma} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ are the three Pauli matrices, and $\boldsymbol{v}(\boldsymbol{k})$ is a smooth vector fields in the Brillouin Zone. Assume that $\boldsymbol{v}(\boldsymbol{k})$ has only two zeros at \boldsymbol{k}_{R} and \boldsymbol{k}_{L} :

$$
\begin{equation*}
M\left(\boldsymbol{k}_{R}+\delta \boldsymbol{k}\right)=\delta k_{x} \sigma^{1}+\delta k_{y} \sigma^{2}+\delta k_{z} \sigma^{3}, \quad M\left(\boldsymbol{k}_{L}+\delta \boldsymbol{k}\right)=-\delta k_{x} \sigma^{1}-\delta k_{y} \sigma^{2}-\delta k_{z} \sigma^{3} \tag{2}
\end{equation*}
$$

Show that the one-body Hamiltonian in the continuum \boldsymbol{x}-space is given by

$$
\begin{equation*}
H_{\text {one-body }}=\sigma^{1} \otimes \sigma^{3} \mathrm{i} \partial_{x}+\sigma^{2} \otimes \sigma^{3} \mathrm{i} \partial_{y}+\sigma^{3} \otimes \sigma^{3} \mathrm{i} \partial_{z} . \tag{3}
\end{equation*}
$$

The corresponding many-body Hamiltonian is given by

$$
\begin{equation*}
\hat{H}=\int \mathrm{d} \boldsymbol{x}^{3} \hat{c}_{b}^{\dagger}\left(H_{\text {one-body }}\right)_{b a} \hat{c}_{a} \tag{4}
\end{equation*}
$$

(b) We like to rewrite the many-body Hamiltonian in terms of Majorana fermions

$$
\begin{equation*}
\hat{H}=\int \mathrm{d} \boldsymbol{x}^{3} \hat{\eta}_{\beta}\left(H_{\text {one-body }}^{R}\right)_{\beta \alpha} \hat{\eta}_{\alpha} . \tag{5}
\end{equation*}
$$

The corresponding one-body Majorana-fermions Hamiltonian can by obtained by replacing -i by $\varepsilon=\mathrm{i} \sigma^{2}$ (see page 14 of Lecture note 3). We first needs to make i explicit (this step is crucial)

$$
\begin{align*}
H_{\text {one-body }} & =\mathrm{i} \sigma^{1} \otimes \sigma^{3} \partial_{x}+\varepsilon \otimes \sigma^{3} \partial_{y}+\mathrm{i} \sigma^{3} \otimes \sigma^{3} \partial_{z} \\
& =\mathrm{i}\left(\sigma^{1} \otimes \sigma^{3} \partial_{x}-\mathrm{i} \varepsilon \otimes \sigma^{3} \partial_{y}+\sigma^{3} \otimes \sigma^{3} \partial_{z}\right) . \tag{6}
\end{align*}
$$

Then, inside the bracket, we replace -i by $\varepsilon=\mathrm{i} \sigma^{2}$ and 1 by σ^{0} to obtain

$$
\begin{equation*}
H_{\text {one-body }}^{R}=\mathrm{i}\left(\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{3} \partial_{x}+\varepsilon \otimes \varepsilon \otimes \sigma^{3} \partial_{y}+\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} \partial_{z}\right) \tag{7}
\end{equation*}
$$

The 8×8 gamma matrices

$$
\begin{equation*}
\gamma_{1}=\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{3}, \quad \gamma_{2}=\varepsilon \otimes \varepsilon \otimes \sigma^{3}, \quad \gamma_{3}=\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} \tag{8}
\end{equation*}
$$

are real symmetric and satisfy $\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=2 \delta_{i j}$. Just like the 2 d case discussed in the class, the $U^{f}(1)$ symmetry and time reversal symmetry generators are given by

$$
\begin{equation*}
Q=\varepsilon \otimes \sigma^{0} \otimes \sigma^{0}, \quad T=\sigma^{3} \otimes \varepsilon \otimes \sigma^{0}, \quad T Q=\sigma^{1} \otimes \varepsilon \otimes \sigma^{0} \tag{9}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
Q T=-T Q, \quad \gamma_{i} T=-T \gamma_{i}, \quad \gamma_{i} Q=Q \gamma_{i}, \quad \gamma_{i} T Q=-T Q \gamma_{i} . \tag{10}
\end{equation*}
$$

The mass term A is a real anti-symmetric matrix satisfying

$$
\begin{equation*}
A \gamma_{i}=-\gamma_{i} A, \quad A T=-T A, \quad A Q=Q A, \quad A T Q=-T Q A \tag{11}
\end{equation*}
$$

Find the most general form of the mass term.
(c) Show that the space of the mass matrix A is $\mathcal{R}_{3}^{2}=\mathcal{R}_{2-3+2}=\mathcal{R}_{1}$. We also have $\mathcal{R}_{3}^{2}=\mathcal{R}_{1}^{0}$.
(d) Let us calculate the space \mathcal{R}_{1}^{0}, which is the space of $2 n \times 2 n$ anti-symmetric real matrices A that satisfy

$$
\begin{equation*}
A^{2}=-I_{2 n}, \quad A \rho=-\rho A \tag{12}
\end{equation*}
$$

where ρ is a real orthogonal matrix that satisfies

$$
\begin{equation*}
\rho^{2}=1 \tag{13}
\end{equation*}
$$

We may choose a basis such that

$$
\rho=\left(\begin{array}{cc}
I_{n} & 0 \tag{14}\\
0 & -I_{n}
\end{array}\right)
$$

where I_{n} is the $n \times n$ identity matrix.
Show that A has a form

$$
A=\left(\begin{array}{cc}
0 & O_{n} \tag{15}\\
-O_{n}^{\top} & 0
\end{array}\right), \quad O_{n} \in O(n) .
$$

Thus $\mathcal{R}_{1}^{0}=O(n)$ and $\pi_{0}\left(\mathcal{R}_{1}^{0}\right)=\mathbb{Z}_{2}$. This suggests that in $3+1 \mathrm{D}$, the gapped noninteracting fermions with $U_{\text {charge }}^{f}(1) \rtimes Z_{4}^{T} / Z_{2}^{f}$ symmetry has only two phases, a trivial phase and a topological insulator phase.

MIT OpenCourseWare
https://ocw.mit.edu

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems

 Fall 2021For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

