
8.513 Problem Set # 2 
Problems: 

1. (15 pts) A particle on torus with uniform magnetic field 

Consider a particle on a torus of size Lx × Ly, described by i∂tψ(x, y, t) = Hψ(x, y, t), H = 
−m ∂2 . (In this class we often use ~ = e = c = 1 unit.) The wave function satisfy the periodic 2 
boundary condition 

ψ(x + Lx, y) = ψ(x, y + Ly) = ψ(x, y). (1) 

Now consider a charge-1 particle on a torus of size Lx × Ly with a uniform magnetic field B, 
described by i∂tψ(x, y, t) = H∂tψ(x, y, t), H = −m 

2 (∂ − iA)2 . 

(a) Under the gauge transformation ψ → ψ0 = eif(x,y)ψ, the equation of motion is changed 
to i∂tψ0 = H 0ψ0 . Find the gauge transformed H 0 . 

(b) A uniform magnetic field B can be described by (Ax, Ay) = (−By, 0). We note that 
A(x, y) = A(x+Lx, y) and the wave function can satisfy the periodic boundary condition 
in the x-direction 

ψ(x + Lx, y) = ψ(x, y). (2) 

But A(x, y) 6= A(x, y+Ly) and the wave function does not satisfy the periodic boundary 
condition in the y-direction. But A(x, y) and A(x, y + Ly) only differ by a U(1)-gauge 
transformation: 

ifA(x, y + Ly) = A(x, y) − iU−1∂U, U = e . (3) 

Find U(x, y). Find the modified “periodic” boundary condition in the y-direction 

ψ(x, y + Ly) =?ψ(x, y). (4) 

Show that, in order for the modified “periodic” boundary condition to be consistent, the 
magnetic field on torus must be quantized, such that total number of flux quanta (the 
Chern number) through the torus must be an integer. 

(c) Show that the number degenerate states in the first Landau level is equal to the number 
of flux quanta. 

We have seen that the motion of a particle in the first Landau level is described by a phase 
space which is nothing but the torus (x, y). In this case, the number of flux quantum of the 
phase-space magnetic field is equal to the total number of states or 

Chern number of phase-space magnetic field = number of states. (5) 

on torus. But for spin-S, the phase space is a sphere, which lead to a different result 

Chern number of phase-space magnetic field = number of states − 1. (6) 
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2. (20 pts) Electron hopping in a 2D chiral magnet of triangular lattice 

We consider electron hopping on a triangular lattice. The lattice has a non coplanar magnetic 
order, where the magnetic moments may point in one of the for directions, n1, n2, n3, n4, as 
shown in the figure below. 

Such a magnetic order is called chiral magnetic order due to its handness. 

Due to magnetic interaction, we assume the electron spin state � � 
cos(θi/2)|nii = (7)

eiϕi sin(θi/2) 

on each site to be always parallel to the magnetic moment on that site. The electron hopping 
amplitude tij from site-i to site-j is given by overlap of the electron spin wave function 

tij = Ahni|nj i, A > 0. (8) 

In general, tij is complex, and the total phase of hopping around a triangle ijk is the phase 
of the product of three hoppings: tij tjktki. Such a phase correspond to magnetic flux through 
the triangle ijk. 

(a) Show that the flux is uniform and compute the value of the flux for each triangle. (We 
see that the chiral magnetic order can simulate a uniform magnetic field.) 

(b) Show that tij ’s do not have the translation symmetry of the triangular lattice. Show that 
we can re-adjust the phases of the spin states |n1i, |n2i, |n3i, |n4i, such that tij ’s only double 
the unit cell of the triangular lattice. 

(c) Since the doubled unit cell contains two sites, there are two bands. Find the dispersions of 
the two bands. (Hint: You may view the triangular lattice as a square lattice with a diagonal 
link.) What is the gap between the two bands? 

(d) Now assume the hopping on the horizontal links are zero. Find the new dispersions of 
the two bands. What is the gap between the two bands? 
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