
8.513 Problem Set # 3 
Problems: 

1. (10 pts) The dynamics of a particle with spin-orbit coupling 
The spin-1/2 particle is described by the following Hamiltonian 

2Ĥ = 
1 

p̂ + gσi p̂i + V (x̂)
2m 

where i = x, y, z are the three directions of space and g > 0. The Pauli matrices σi act on 
the spin index of the particle. V (x) is the external potential. (Remark: The spin-orbital 
coupling as given by this Hamiltonian implies the absence of inversion symmetry x → −x. 
While unphysical for free space, this form of spin-orbit Hamiltonian can be realized in certain 
semiconductor crystals, in both two and three dimensions.) 

(a) Assume V (x) = 0. Find the energy �p of the lowest energy state with momentum p. We 
denote such a state as |pi, and its wave function as ψp. 

(b) A beam of particles is in a region with V (x) = 0 where the particles are in the |pi state 
defined above with p in the z direction: p = pz and p > gm (here z is the unit vector in the z 
direction). The beam strikes a hard wall which occupies the region with z > 0. The hard wall 
can be modeled by an infinite potential V (x) = +∞. What is the energy, the momentum, 
and the velocity of the reflected particles. (Hint: the reflection on the hard wall conserves 
the spin.) 

(Optional: you may want to think about the more general case p = (p sin θ, 0, p cos θ).) 

(c) Consider a wave-packet state 

−(x̂−x)2/2ξ2 |x, pi ≡ e ψp 

where |pi is the state defined in (a). The particle described by such a state has average 
position x and average momentum p. Use the coherent states |x, pi and the coherent-state 
approach to obtain a phase-space Lagrangian that determine the classical motion of x and p, 
assuming the potential V (x) is almost constant over the scale ξ. Find the equation of motion 
for x and p. 

2. (10 pts.) Electric conductance in graphene 

The graphene has two Fermi “points” K and K 0 . The band structure near one Fermi “point” 
K is described by the k-space “hoping matrix” 

MK (k) = ~vkxσx + ~vkyσy, (1) 

where k is measured from the K point, and σx,y,z are Pauli matrices. The band structure 
near the other Fermi “point” K 0 is described by the k-space “hoping matrix” 

MK0 (k) = ~vkxσy + ~vkyσx , (2) 

where k is measured from the K 0 point. 

(a) Assume the chemical potential is µ = 0. Find the density ne of thermally excited electrons 
(ie the density electrons in the conduction band with positive energy), at temperature T , up 

1 



to a dimensionless constant. Find the density nh of thermally excited holes (ie the density 
holes in the valence band with negative energy), at temperature T , up to a dimensionless 
constant. You will see that ne ∼ nh ∼ T 2 . 

(b) Assuming a temperature independent relaxation time τ . One might expect the conduc-
tivity of the graphene is σ ∼ ne ∼ T 2 (as in Drude model). Use the Boltzmann transport 
equation to find the conductivity of the graphene at temperature T . 

3. (20 pts.) Electric conductance in strained graphene 

Under a certain strain, the band structure of graphene near one Fermi “point” K is described 
by the k-space “hoping matrix” 

MK (k) = ~vkxσx + ~vkyσy +Δσz , (3) 

where k is measured from the K point. The band structure near the other Fermi “point” K 0 

is described by the k-space “hoping matrix” 

MK0 (k) = ~vkxσy + ~vkyσx +Δσz , (4) 

where k is measured from the K 0 point. 

(a) Find the k-space “magnetic” field b̃xy at K and K 0 points, for the conduction and the 
valence bands. Show that the k-space “magnetic” field b̃xy has a peak near K and K 0 points. 
What is the total flux carried by the peaks? What is the rough width δk of the peaks? (Hint: 
you may use Mathematica, Maple, etc ) 

(b) Assume temperature T = 0. Also assume the electron density near K-point is nK , ande 
K0 K K0 

the hole density near K 0-point is n . Find the Hall conductivity σH for small n , n limith xy e h 

and large nK , nK
0 
limit. Describe qualitatively how the Hall conductivity σH depends one h xy 

K K0 
n , n e h . 

(c) Consider an electron near the K-point under an electric field E = Ex. Assume at t = 0 
the electron has x = k = 0. Using the EOM to find the location of electron at time τ . Here 
we assume τ is small, so that we can treat b̃xy as k independent. (At time τ we may assume 
the electron momentum is reset to k = 0 due to scattering by impurities. This way we may 
obtain an average motion of electron under an electric field E and dissipation described by 
τ .) 
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