8.513 Problem Set \# 3

Problems:

1. (10 pts) The dynamics of a particle with spin-orbit coupling

The spin- $1 / 2$ particle is described by the following Hamiltonian

$$
\hat{H}=\frac{1}{2 m} \hat{\boldsymbol{p}}^{2}+g \sigma^{i} \hat{p}_{i}+V(\hat{\boldsymbol{x}})
$$

where $i=x, y, z$ are the three directions of space and $g>0$. The Pauli matrices σ^{i} act on the spin index of the particle. $V(\boldsymbol{x})$ is the external potential. (Remark: The spin-orbital coupling as given by this Hamiltonian implies the absence of inversion symmetry $\boldsymbol{x} \rightarrow-\boldsymbol{x}$. While unphysical for free space, this form of spin-orbit Hamiltonian can be realized in certain semiconductor crystals, in both two and three dimensions.)
(a) Assume $V(\boldsymbol{x})=0$. Find the energy $\epsilon_{\boldsymbol{p}}$ of the lowest energy state with momentum \boldsymbol{p}. We denote such a state as $|\boldsymbol{p}\rangle$, and its wave function as $\psi_{\boldsymbol{p}}$.
(b) A beam of particles is in a region with $V(\boldsymbol{x})=0$ where the particles are in the $|\boldsymbol{p}\rangle$ state defined above with \boldsymbol{p} in the z direction: $\boldsymbol{p}=p \boldsymbol{z}$ and $p>g m$ (here \boldsymbol{z} is the unit vector in the z direction). The beam strikes a hard wall which occupies the region with $z>0$. The hard wall can be modeled by an infinite potential $V(\boldsymbol{x})=+\infty$. What is the energy, the momentum, and the velocity of the reflected particles. (Hint: the reflection on the hard wall conserves the spin.)
(Optional: you may want to think about the more general case $\boldsymbol{p}=(p \sin \theta, 0, p \cos \theta)$.)
(c) Consider a wave-packet state

$$
|\boldsymbol{x}, \boldsymbol{p}\rangle \equiv \mathrm{e}^{-(\hat{\boldsymbol{x}}-\boldsymbol{x})^{2} / 2 \xi^{2}} \psi_{\boldsymbol{p}}
$$

where $|\boldsymbol{p}\rangle$ is the state defined in (a). The particle described by such a state has average position \boldsymbol{x} and average momentum \boldsymbol{p}. Use the coherent states $|\boldsymbol{x}, \boldsymbol{p}\rangle$ and the coherent-state approach to obtain a phase-space Lagrangian that determine the classical motion of \boldsymbol{x} and \boldsymbol{p}, assuming the potential $V(\boldsymbol{x})$ is almost constant over the scale ξ. Find the equation of motion for \boldsymbol{x} and \boldsymbol{p}.

2. (10 pts.) Electric conductance in graphene

The graphene has two Fermi "points" K and K^{\prime}. The band structure near one Fermi "point" K is described by the \boldsymbol{k}-space "hoping matrix"

$$
\begin{equation*}
M_{K}(\boldsymbol{k})=\hbar v k_{x} \sigma^{x}+\hbar v k_{y} \sigma^{y} \tag{1}
\end{equation*}
$$

where \boldsymbol{k} is measured from the K point, and $\sigma^{x, y, z}$ are Pauli matrices. The band structure near the other Fermi "point" K^{\prime} is described by the \boldsymbol{k}-space "hoping matrix"

$$
\begin{equation*}
M_{K^{\prime}}(\boldsymbol{k})=\hbar v k_{x} \sigma^{y}+\hbar v k_{y} \sigma^{x}, \tag{2}
\end{equation*}
$$

where \boldsymbol{k} is measured from the K^{\prime} point.
(a) Assume the chemical potential is $\mu=0$. Find the density n_{e} of thermally excited electrons (ie the density electrons in the conduction band with positive energy), at temperature T, up
to a dimensionless constant. Find the density n_{h} of thermally excited holes (ie the density holes in the valence band with negative energy), at temperature T, up to a dimensionless constant. You will see that $n_{e} \sim n_{h} \sim T^{2}$.
(b) Assuming a temperature independent relaxation time τ. One might expect the conductivity of the graphene is $\sigma \sim n_{e} \sim T^{2}$ (as in Drude model). Use the Boltzmann transport equation to find the conductivity of the graphene at temperature T.

3. (20 pts.) Electric conductance in strained graphene

Under a certain strain, the band structure of graphene near one Fermi "point" K is described by the \boldsymbol{k}-space "hoping matrix"

$$
\begin{equation*}
M_{K}(\boldsymbol{k})=\hbar v k_{x} \sigma^{x}+\hbar v k_{y} \sigma^{y}+\Delta \sigma^{z} \tag{3}
\end{equation*}
$$

where \boldsymbol{k} is measured from the K point. The band structure near the other Fermi "point" K^{\prime} is described by the \boldsymbol{k}-space "hoping matrix"

$$
\begin{equation*}
M_{K^{\prime}}(\boldsymbol{k})=\hbar v k_{x} \sigma^{y}+\hbar v k_{y} \sigma^{x}+\Delta \sigma^{z} \tag{4}
\end{equation*}
$$

where \boldsymbol{k} is measured from the K^{\prime} point.
(a) Find the \boldsymbol{k}-space "magnetic" field $\tilde{b}_{x y}$ at K and $K_{\tilde{b}}^{\prime}$ points, for the conduction and the valence bands. Show that the \boldsymbol{k}-space "magnetic" field $\tilde{b}_{x y}$ has a peak near K and K^{\prime} points. What is the total flux carried by the peaks? What is the rough width δk of the peaks? (Hint: you may use Mathematica, Maple, etc)
(b) Assume temperature $T=0$. Also assume the electron density near K-point is n_{e}^{K}, and the hole density near K^{\prime}-point is $n_{h}^{K^{\prime}}$. Find the Hall conductivity $\sigma_{x y}^{H}$ for small $n_{e}^{K}, n_{h}^{K^{\prime}}$ limit and large $n_{e}^{K}, n_{h}^{K^{\prime}}$ limit. Describe qualitatively how the Hall conductivity $\sigma_{x y}^{H}$ depends on $n_{e}^{K}, n_{h}^{K^{\prime}}$.
(c) Consider an electron near the K-point under an electric field $\boldsymbol{E}=E \boldsymbol{x}$. Assume at $t=0$ the electron has $\boldsymbol{x}=\boldsymbol{k}=0$. Using the EOM to find the location of electron at time τ. Here we assume τ is small, so that we can treat $\tilde{b}_{x y}$ as \boldsymbol{k} independent. (At time τ we may assume the electron momentum is reset to $\boldsymbol{k}=0$ due to scattering by impurities. This way we may obtain an average motion of electron under an electric field \boldsymbol{E} and dissipation described by τ.

MIT OpenCourseWare
https://ocw.mit.edu

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems

 Fall 2021For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

