8.513 Problem Set # 3

Problems:

- 1. (10 pts) The dynamics of a particle with spin-orbit coupling
 - The spin-1/2 particle is described by the following Hamiltonian

$$\hat{H} = \frac{1}{2m}\hat{\boldsymbol{p}}^2 + g\sigma^i\hat{p}_i + V(\hat{\boldsymbol{x}})$$

where i = x, y, z are the three directions of space and g > 0. The Pauli matrices σ^i act on the spin index of the particle. $V(\mathbf{x})$ is the external potential. (Remark: The spin-orbital coupling as given by this Hamiltonian implies the absence of inversion symmetry $\mathbf{x} \to -\mathbf{x}$. While unphysical for free space, this form of spin-orbit Hamiltonian can be realized in certain semiconductor crystals, in both two and three dimensions.)

(a) Assume $V(\boldsymbol{x}) = 0$. Find the energy $\epsilon_{\boldsymbol{p}}$ of the lowest energy state with momentum \boldsymbol{p} . We denote such a state as $|\boldsymbol{p}\rangle$, and its wave function as $\psi_{\boldsymbol{p}}$.

(b) A beam of particles is in a region with $V(\boldsymbol{x}) = 0$ where the particles are in the $|\boldsymbol{p}\rangle$ state defined above with \boldsymbol{p} in the z direction: $\boldsymbol{p} = p\boldsymbol{z}$ and p > gm (here \boldsymbol{z} is the unit vector in the z direction). The beam strikes a hard wall which occupies the region with z > 0. The hard wall can be modeled by an infinite potential $V(\boldsymbol{x}) = +\infty$. What is the energy, the momentum, and the velocity of the reflected particles. (Hint: the reflection on the hard wall conserves the spin.)

(Optional: you may want to think about the more general case $p = (p \sin \theta, 0, p \cos \theta)$.)

(c) Consider a wave-packet state

$$|\boldsymbol{x},\boldsymbol{p}\rangle \equiv \mathrm{e}^{-(\hat{\boldsymbol{x}}-\boldsymbol{x})^2/2\xi^2}\psi_{\boldsymbol{p}}$$

where $|\mathbf{p}\rangle$ is the state defined in (a). The particle described by such a state has average position \mathbf{x} and average momentum \mathbf{p} . Use the coherent states $|\mathbf{x}, \mathbf{p}\rangle$ and the coherent-state approach to obtain a phase-space Lagrangian that determine the classical motion of \mathbf{x} and \mathbf{p} , assuming the potential $V(\mathbf{x})$ is almost constant over the scale ξ . Find the equation of motion for \mathbf{x} and \mathbf{p} .

2. (10 pts.) Electric conductance in graphene

The graphene has two Fermi "points" K and K'. The band structure near one Fermi "point" K is described by the k-space "hoping matrix"

$$M_K(\mathbf{k}) = \hbar v k_x \sigma^x + \hbar v k_y \sigma^y,\tag{1}$$

where \mathbf{k} is measured from the K point, and $\sigma^{x,y,z}$ are Pauli matrices. The band structure near the other Fermi "point" K' is described by the \mathbf{k} -space "hoping matrix"

$$M_{K'}(\boldsymbol{k}) = \hbar v k_x \sigma^y + \hbar v k_y \sigma^x, \tag{2}$$

where \boldsymbol{k} is measured from the K' point.

(a) Assume the chemical potential is $\mu = 0$. Find the density n_e of thermally excited electrons (*ie* the density electrons in the conduction band with positive energy), at temperature T, up

to a dimensionless constant. Find the density n_h of thermally excited holes (*ie* the density holes in the valence band with negative energy), at temperature T, up to a dimensionless constant. You will see that $n_e \sim n_h \sim T^2$.

(b) Assuming a temperature independent relaxation time τ . One might expect the conductivity of the graphene is $\sigma \sim n_e \sim T^2$ (as in Drude model). Use the Boltzmann transport equation to find the conductivity of the graphene at temperature T.

3. (20 pts.) Electric conductance in strained graphene

Under a certain strain, the band structure of graphene near one Fermi "point" K is described by the k-space "hoping matrix"

$$M_K(\mathbf{k}) = \hbar v k_x \sigma^x + \hbar v k_y \sigma^y + \Delta \sigma^z, \tag{3}$$

where \boldsymbol{k} is measured from the K point. The band structure near the other Fermi "point" K' is described by the \boldsymbol{k} -space "hoping matrix"

$$M_{K'}(\mathbf{k}) = \hbar v k_x \sigma^y + \hbar v k_y \sigma^x + \Delta \sigma^z, \tag{4}$$

where \boldsymbol{k} is measured from the K' point.

(a) Find the **k**-space "magnetic" field \tilde{b}_{xy} at K and K' points, for the conduction and the valence bands. Show that the **k**-space "magnetic" field \tilde{b}_{xy} has a peak near K and K' points. What is the total flux carried by the peaks? What is the rough width δk of the peaks? (Hint: you may use Mathematica, Maple, *etc*)

(b) Assume temperature T = 0. Also assume the electron density near K-point is n_e^K , and the hole density near K'-point is $n_h^{K'}$. Find the Hall conductivity σ_{xy}^H for small $n_e^K, n_h^{K'}$ limit and large $n_e^K, n_h^{K'}$ limit. Describe qualitatively how the Hall conductivity σ_{xy}^H depends on $n_e^K, n_h^{K'}$.

(c) Consider an electron near the K-point under an electric field $\mathbf{E} = E\mathbf{x}$. Assume at t = 0 the electron has $\mathbf{x} = \mathbf{k} = 0$. Using the EOM to find the location of electron at time τ . Here we assume τ is small, so that we can treat \tilde{b}_{xy} as \mathbf{k} independent. (At time τ we may assume the electron momentum is reset to $\mathbf{k} = 0$ due to scattering by impurities. This way we may obtain an average motion of electron under an electric field \mathbf{E} and dissipation described by τ .)

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.