8.513 Problem Set \# 4

Problems:

1. (15 pts) Casimir effect of photons

Consider a 1D quantum boson gas between two hard walls separated by a distance L. The energy-momentum relation of the bosons is

$$
\epsilon(p)=c|p| .
$$

(a)

(b)

We can view the 1D quantum boson gas as a quantum string of length L with fixed boundary condition. The frequency-wave-vector relation of the wave on the string is given by

$$
\omega_{k}=c|k| .
$$

The quantum string can be viewed as a collection of quantum oscillators labeled by wave vectors $\kappa_{n}=n \frac{\pi}{L}, n=1,2,3,4, \cdots$.
The ground state energy of the quantum string is given by

$$
E_{\mathrm{vac}}(L)=\sum_{\kappa_{n}} \frac{1}{2} \epsilon\left(\hbar \kappa_{n}\right)=\sum_{\kappa_{n}} \frac{1}{2} c \hbar \kappa_{n}
$$

which diverges.
(a) To fix the infinite problem, we may use the so called heat kernel regularization, by rewriting the ground state energy as

$$
E_{\mathrm{vac}}^{\mathrm{heat}}(L)=\sum_{\kappa_{n}} \frac{1}{2} c \hbar \kappa_{n} \mathrm{e}^{-\kappa_{n} a}
$$

where $a \ll L$ is a small length scale (or cut-off length scale). Find $E_{\text {vac }}^{\text {heat }}(L)$. Find $E_{\text {vac }}^{\text {heat }}(L)$ in small a limit, by dropping the linear a-term and the higher order terms.
(b) To fix the infinite problem, we may also use the so called lattice regularization, by rewriting the ground state energy as

$$
E_{\mathrm{vac}}^{\mathrm{latt}}(L)=\sum_{n=1}^{N} c \hbar a^{-1} \sin \left(\frac{1}{2} \kappa_{n} a\right), \quad N=L / a,
$$

where $a \ll L$ is a small length scale (or cut-off length scale). Find $E_{\text {vac }}^{\text {latt }}(L)$. Find $E_{\text {vac }}^{\text {latt }}(L)$ in small a limit, by dropping the linear a-term and the higher order terms.
Remark: from the above two calculations, you will see a sign of a infamous identity $\sum_{n=1}^{\infty} n=-1 / 12$.
(c) Consider the following boson systems with three hard walls.

Find the new ground state energies $E_{\text {vac }}^{\text {heat }}(L, l)$ and $E_{\text {vac }}^{\text {latt }}(L, l)$, assuming $a \ll l, L$. Find the force between the two hard walls separated by l, assuming $l \ll L$. This is the Casimir force.

2. (25pts) Quantum coherent states and classical phase-space Lagrangian:

Many-body Hamiltonian for 1D interacting lattice bosons in real space is given by

$$
\hat{H}=\sum_{i}\left[t\left(\hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}+\hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}\right)-t\left(\hat{\varphi}_{i+1}^{\dagger} \hat{\varphi}_{i}+\hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i+1}\right)\right]-\sum_{i} \mu \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}+\sum_{i} U \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i} \hat{\varphi}_{i},
$$

where i labels the lattice sites, and

$$
\left[\hat{\varphi}_{i}, \hat{\varphi}_{j}^{\dagger}\right]=\delta_{i, j} .
$$

We want to find the low energy spectrum of the above interacting system via the semi classical approach.
(a) Show that

$$
\langle 0| \mathrm{e}^{\sum_{i} \tilde{\phi}_{i}^{*} \hat{\varphi}_{i}} \mathrm{e}^{\sum_{j} \phi_{j} \hat{\varphi}_{j}^{\dagger}}|0\rangle=\mathrm{e}^{\sum_{i} \tilde{\phi}_{i}^{*} \phi_{i}},
$$

where $|0\rangle$ is defined as state satisfying

$$
\hat{\varphi}_{i}|0\rangle=0 .
$$

(Hint: $\mathrm{e}^{\hat{A}} \mathrm{e}^{\hat{B}}=\mathrm{e}^{[\hat{A}, \hat{B}]} \mathrm{e}^{\hat{B}} \mathrm{e}^{\hat{A}}$ provided that $[\hat{A}, \hat{B}]$ commutes with \hat{A} and \hat{B}.)
(b) Show that

$$
\left|\left\{\phi_{i}\right\}\right\rangle \equiv \frac{1}{\sqrt{N\left(\phi_{i}\right)}} \mathrm{e}^{\sum_{i} \phi_{i} \hat{\varphi}_{i}^{\dagger}}|0\rangle
$$

is a normalized common eigenstate of $\hat{\varphi}_{i}$'s with eigenvalues ϕ_{i}. Here

$$
N\left(\phi_{i}\right)=\mathrm{e}^{\sum_{i}\left|\phi_{i}\right|^{2}}
$$

(c) Show that classical Lagrangian (in the semi classical approximation)

$$
L\left(\partial_{t} \phi_{i}(t), \phi_{i}(t)\right)=\left\langle\phi_{i}(t)\right| \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}-\hat{H}\left|\phi_{i}(t)\right\rangle
$$

is given by

$$
L=\sum_{i} \mathrm{i} \phi_{i}^{*} \partial_{t} \phi_{i}-\bar{H}
$$

where the average energy is given by

$$
\bar{H}=\sum_{i}\left[t\left(\phi_{i}^{*} \phi_{i}+\phi_{i}^{*} \phi_{i}\right)-t\left(\phi_{i}^{*} \phi_{i+1}+\phi_{i+1}^{*} \phi_{i}\right)-\mu\left|\phi_{i}\right|^{2}+U\left|\phi_{i}\right|^{4}\right]
$$

(d) For trial wave function $\left|\left\{\phi_{i}\right\}\right\rangle$ with $\phi_{i}=\phi$ (ie independent of i), find the complex variational parameter ϕ that minimize \bar{H}, assuming $t, U>0$ and $\mu \geq 0$. We denote such a value of ϕ as $\bar{\phi}$.
(e) Let $\phi_{i}=\bar{\phi}+\delta \phi_{i}$. Find the equation of motion for $\delta \phi_{i}$, keeping only terms linear in $\delta \phi_{i}$. Find the frequency ω_{k} of the plane wave solution $\delta \phi_{i}=A \mathrm{e}^{\mathrm{i}\left(k i-\omega_{k} t\right)}$. What is ω_{k} for small k at the transition point $\mu=0$ and in superfluid phase $\mu>0$? What is ω_{k} for small k in the insulating phase $\mu<0$?
Remark: you will see that the dynamical exponent $z=2$ at the critical point. There is no emergence of Lorentz symmetry at low energies. But the dynamical exponent is not an arbitrary number. In the superfuild phase the gapless excutations have $\omega_{k} \sim|k|$ (ie $z=1$). There is an emergence of Lorentz symmetry at low energies.
As a quantum theory (instead of as a classical field theory), the low energy spectrum of the interacting bosons is given by a collection of decoupled oscillators labeled by k with frequencies ω_{k}.

MIT OpenCourseWare
https://ocw.mit.edu

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems

 Fall 2021For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

