
8.513 Problem Set # 4 
Problems: 

1. (15 pts) Casimir effect of photons 

Consider a 1D quantum boson gas between two hard walls separated by a distance L. The 
energy-momentum relation of the bosons is 

�(p) = c|p|. 

(a) (b)

We can view the 1D quantum boson gas as a quantum string of length L with fixed boundary 
condition. The frequency-wave-vector relation of the wave on the string is given by 

ωk = c|k|. 

The quantum string can be viewed as a collection of quantum oscillators labeled by wave 
πvectors κn = nL , n = 1, 2, 3, 4, · · · . 

The ground state energy of the quantum string is given by X X1 1 
Evac(L) = �(~κn) = c~κn

2 2 
κn κn 

which diverges. 

(a) To fix the infinite problem, we may use the so called heat kernel regularization, by 
rewriting the ground state energy as X 1 

Eheat −κna(L) = c~κnevac 2 
κn 

where a � L is a small length scale (or cut-off length scale). Find Eheat(L). Findvac 
Eheat(L) in small a limit, by dropping the linear a-term and the higher order terms. vac 

(b) To fix the infinite problem, we may also use the so called lattice regularization, by 
rewriting the ground state energy as 

NX 
Elatt(L) = c~a −1 sin(

1 
κna), N = L/a,vac 2 

n=1 

where a � L is a small length scale (or cut-off length scale). Find Elatt(L). Findvac 
Elatt(L) in small a limit, by dropping the linear a-term and the higher order terms. vac 

Remark: from the above two calculations, you will see a sign of a infamous identityP∞ 
n=1 n = −1/12. 
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(c) Consider the following boson systems with three hard walls. 
L

l

Find the new ground state energies Eheat(L, l) and Elatt(L, l), assuming a � l, L. Findvac vac 
the force between the two hard walls separated by l, assuming l � L. This is the Casimir 
force. 

2. (25pts) Quantum coherent states and classical phase-space Lagrangian: 

Many-body Hamiltonian for 1D interacting lattice bosons in real space is given by Xh i X X † † † † † † †H = t(ϕ̂ ϕ̂i + ϕ̂ ϕ̂i) − t(ϕ̂ ϕ̂i + ϕ̂ ˆ − µϕ̂ ϕ̂i + Uϕ̂ ϕ̂ ϕ̂iϕ̂i,ˆ 
i i i+1 i ϕi+1) i i i 

i i i 

where i labels the lattice sites, and 

†[ϕ̂i, ϕ̂ ] = δi,j .j 

We want to find the low energy spectrum of the above interacting system via the semi classical 
approach. 

(a) Show that P P † P˜ ˜φ∗ϕ̂i j φj ϕ̂ φ∗φii ih0|e i e j |0i = e i , 

where |0i is defined as state satisfying 

ϕ̂i|0i = 0. 

Â B̂ [A,ˆ B̂] B̂ ˆ ˆ ˆ(Hint: e e = e e eA provided that [A,ˆ B̂] commutes with A and B.) 

(b) Show that P1 † 
i φiϕ̂|{φi}i ≡ p e i |0i 

N(φi) 

is a normalized common eigenstate of ϕ̂i’s with eigenvalues φi. Here P 
N(φi) = e i |φi|2 

. 

(c) Show that classical Lagrangian (in the semi classical approximation) 

d 
L(∂tφi(t), φi(t)) = hφi(t)|i − Ĥ |φi(t)i 

dt 

is given by X 
¯L = iφ ∗ 

i ∂tφi − H 
i 

where the average energy is given by X� � 
H̄ = t(φ ∗ 

i φi + φi 
∗ φi) − t(φ ∗ 

i φi+1 + φ ∗ 
i+1φi) − µ|φi|2 + U |φi|4 

i 
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(d) For trial wave function |{φi}i with φi = φ (ie independent of i), find the complex 
¯variational parameter φ that minimize H, assuming t, U > 0 and µ ≥ 0. We denote such 

a value of φ as φ̄. 
¯(e) Let φi = φ + δφi. Find the equation of motion for δφi, keeping only terms linear in δφi. 

i(ki−ωkt)Find the frequency ωk of the plane wave solution δφi = Ae . What is ωk for small 
k at the transition point µ = 0 and in superfluid phase µ > 0? What is ωk for small k 
in the insulating phase µ < 0? 

Remark: you will see that the dynamical exponent z = 2 at the critical point. There 
is no emergence of Lorentz symmetry at low energies. But the dynamical exponent is 
not an arbitrary number. In the superfuild phase the gapless excutations have ωk ∼ |k|
(ie z = 1). There is an emergence of Lorentz symmetry at low energies. 

As a quantum theory (instead of as a classical field theory), the low energy spectrum of 
the interacting bosons is given by a collection of decoupled oscillators labeled by k with 
frequencies ωk. 
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