8.513 Problem Set # 6

Problems:

1. (30 pts) Solve XY model by mapping it to a free fermion model

Consider a 1+1D XY model on an open change of N sites:

$$H = \sum_{1}^{N-1} \left[-(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y) - h\sigma_i^z \right]$$
(1)

Note that model has a U(1) symmetry generated by σ^z spin rotation

$$U(\theta) = \prod_{i} e^{i\frac{\theta}{2}\sigma_{i}^{z}}.$$
(2)

We expect the ground state to have three phases:

When h = 0, the spin in the ground state all point in the same direction in the $\sigma^x - \sigma^y$ plane. When $h \neq 0$, the spins develop an σ^z component. (The above is a classical picture which is not exactly correct.) When $h > h_c$ or $h < -h_c$, the spins all point to σ^z or $-\sigma^z$ direction. There are two phase transitions at $|h| = h_c$.

- (a) Use the Jordan-Wigner transformation to map the above the XY model to a noninteracting fermion model.
- (b) Now we pretend the fermion model to be the one on a ring of N = even sites, so that the fermion model has the translation symmetry. This will simplify the calculation. Find the ground state energy $E_{\text{ring}}(h, N)$ as a function of h and N.
- (c) Find the transition point $\pm h_c$.
- (d) Show that in the small |h| phase, we have emergence of Lorentz invariance, *ie* the low energy mode has a linear dispersion $\epsilon_k = v|k|$. What is the central charge of this gapless phase? The ground state energy $E_{\text{ring}}(h, N)$ has a linear N term, constant N^0 term, and possible N^{-1} term, *etc*. Write the constant N^{-1} term in term of velocity v. (The N^{-1} term also reveals the central charge of the gapless phase.)
- (e) What is the behavior of the velocity v as we approach the transition point $|h| = h_c$? What is the dispersion relation for the low energy mode at the critical point $|h| = h_c$?
- (f) In the neutron scattering experiment for the h = 0 state, we assume neutron dump a momentum k to the ground state $|\Psi_0\rangle$. We also assume the neutron dump a spin $S_z = 1$ to the ground state $|\Psi_0\rangle$ (*ie* the neutron has a spin flip $\Delta S_z = 1$). Such as scattering creates an excited state $|\Psi_k\rangle = [\sum_i e^{iki}\sigma_i^-]|\Psi_0\rangle$ (σ_i^- changes S_z by 1). We know that $|\Psi_k^f\rangle = [\sum_i e^{iki}c_i]|\Psi_0\rangle$ is an energy eigenstate. Is $|\Psi_k\rangle = [\sum_i e^{iki}\sigma_i^-]|\Psi_0\rangle$ an energy eigenstate? In the above neutron scattering experiment for the h = 0 state, can we observe a δ -function spectrum that following the fermion c_k dispersion relation, or we observe a continuum spectrum? Try to describe the neutron scattering spectrum.

2. (10 pts) An 1D fermion mass term may not give fermions a mass gap

Consider an 1D model with two chiral fermions described by the following Hamiltonian on a ring

$$H = \int_0^L \mathrm{d}x \ c_1^{\dagger}(x) v_1 \mathrm{i}\partial_x c_1(x) + c_2^{\dagger}(x) v_2 \mathrm{i}\partial_x c_2(x) + M(c_1^{\dagger}(x)c_2(x) + h.c.)$$
(3)

where $M(c_1^{\dagger}(x)c_2(x) + h.c.)$ is the mass term. In the continuum, the fermion operators satisfy

$$\{c_i(x), c_j(y)\} = \{c_i^{\dagger}(x), c_j^{\dagger}(y)\} = 0, \qquad \{c_i(x), c_j^{\dagger}(y)\} = \delta(x - y)\delta_{ij}, \tag{4}$$

Find the single particle spectrum of the above model. (Hint: you may want to go to k-space first $\psi_i^{\dagger}(k) = \int_0^L dx \, e^{ikx} c_i^{\dagger}(x)$), for both cases $v_1 v_2 > 0$ (chiral central charge $c \equiv c_R - c_L = \pm 2$) and $v_1 v_2 < 0$ (chiral central charge $c \equiv c_R - c_L = 0$).

The mass term corresponds to a relevant perturbation, you will see that when $v_1v_2 < 0$, the mass term make the system to be gapped. However, when $v_1v_2 > 0$, the system remain gapless even in the presence of the mass term. The 1D system can be gapped only when chiral central charge $c \equiv c_R - c_L = 0$.

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.