
8.513 Problem Set # 8 
Problems: 

1. (15 pts) U(1) non-linear σ-model field theory (“coordinate”-space Lagrangian) 

In the class, we show that a 1d superfluid, at low energies, can be described by the following 
U(1) non-linear σ-model (the “coordinate”-space Lagrangian) Z 

V −1 φ̄2 
2 V1

L = dx (∂tθ)
2 − (∂xθ)

2 + ∂tθ 
4π 4π a| {z } 

a topo. term Z 
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2 − i u ∗ ∂tu, (1)
4π 4π a 

iθ(x)where u(x) = e . We have seen that k =6 0 modes describe the low energy excitations with 
momentum K ∼ 0 (the phonons). 

(a) The k = 0 mode can give rise to other sectors. The k = 0 mode is described by the 
following form of the θ-field 

2π 
θ(x) = m x + θ0 (2)

L 

Find the lowest energy in each sector (which is labeled by m and the angular momentum 
of θ0). 

(b) The angular momentum (ie the canonical momentum) of θ0 is the total number N of 
bosons. What is the total number of bosons for the lowest energy state in each sector. 
(Hint: how to find the canonical momentum of θ0 from the coordinate space Lagrangian?) 

(c) Now we like to figure out what is the total momentum for the lowest energy state in 
each sector. 
One way to do so is to note that translating by Δx will shift the field θ(x) by Δθ = 
m 2π Δx. Shifting θ(x) by Δθ is a U(1) transformation which will change the quantum L 
state with N bosons by a phase eiNΔθ . Using the above information to find the total 
momentum for the lowest energy state in each sector. 
Another way to do so is to consider 

2π 
θ(x, t) = m (x − x0(t)) + θ0 (3)

L 

and assume only x0 is dynamical (ie depend on time). Find the effective Lagrangian of 
x0 and its canonical momentum. Then use such information to find the total momentum 
for the lowest energy state in each sector. 
m in θ(x) corresponds to the U(1) symmetry twist. The dependence of total momentum 
on m indicates the pumping phenomenon: Twisting the boundary condition by the 
U(1) symmetry can generate momentum, the quantum number of the translation symme-
try. This is called a mixed anomaly between translation and U(1) symmetries. We see 
that the presence of the topological term implies the mixed anomaly. At classical level, 
the topological term does not affect the equation of motion and has no effect. At quantum 
level, the topological term has a big effect on the low energy dynamics of the non-linear 
σ-model: The non-linear σ-model must be gapless for any values of V1 and V2, or even 
after we add additional interaction terms, such as (∂xθ)4 . See next problem. 
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2. (25 pts) Mixed anomaly and ground state degeneracy or gaplessness 

In the class, we discussed the mixed anomaly between translation symmetry and U(1) symme-
try. Physically, the mixed anomaly can be described by a pumping phenomenon: Twisting 
the boundary condition by the U(1) symmetry can generate momentum, the quantum number 
of the translation symmetry. 

To be concrete, let us consider a 1d bosonic system on a ring of L site, which is described by 
the following spin-1/2 Hamiltonian 

L−1X 
H0 = Hi,i+1, i ∼ i + L (4) 

i=0 

where the Hamiltonian is a sum of local terms 

†Hi,i+1 = (−tbibi+1 + h.c.) + µni + V nini+1 (5) 

bi (bj ) is the boson annihilation (creation) operator, and ni and the boson density operator: 

† †[bi, bj ] = 0, [bi, bj ] = δi,j , ni = bi bj , (6) 

and satisfy 

† †[ni, bj ] = −bj δij , [ni, b ] = b (7)j j δij . 

iθ 
PL−1 i 

(a) Let |Φi be the ground state of H0. Let |Φθi = e i=0 L ni |Φi. Let N0 be the totalP 
number of bosons in the ground state |Φi: i ni|Φi = N0|Φi. Let K0 be the crystal 
momentum of |Φi: T |Φi = eiK0 |Φi where T is the translation operator defined by 
TbiT † = bi+1. Show that |Φθi is an eigenstate of the translation operator T when θ = 0 
mod 2π. Show that the eigenvalue is ei(K0+ΔK) and find ΔK. PL−1 i ni(eiθ i=0 L is a spacial dependent U(1) transformation, which generates the U(1) sym-
metry twist. A ΔK 6= 0 mod 2π indicates a pumping phenomenon and a mixed anomaly. 
It also implies that |Φθi (for θ = 0 mod 2π) and |Φi are orthogonal many-body states. 
However, when ΔK = 0 mod 2π, |Φθi (for θ = 0 mod 2π) and |Φi may be the same 
state.) 

(b) Next, we like to show that |Φθi (for θ = 0 mod 2π) and |Φi have almost the same energy. 
This allows us to conclude that a mixed anomaly implies gaplessness or ground state 
degeneracy. 

To achieve this goal, first note that, for θ = 0 mod 2π, 

hΦθ|H0|Φθi = LhΦθ|Hi,i+1|Φθi = LhΦ|Hi,i
θ 
+1|Φi = L�θ (8)i,i+1, 

where PL−1 i PL−1 i−iθ iθ niHθ i=0 L i=0 L �θ 
i,i+1 ≡ e ni Hi,i+1e , i,i+1, ≡ hΦ|Hi,i

θ 
+1|Φi (9) 

Find Hi,i
θ 
+1. Note that Hi,i

θ 
+1 is well defined for any θ. We do not need to require θ = 0 

mod 2π. 
d2Hθ d2�θ 

i,i+1 i,i+1(c) Show that = O(L−2) and = O(L−2).
dθ2 dθ2 
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≥ �θ=0 ≥ �θ=0 − �θ=0(d) Show that �θ=2π 
i,i+1 and �θ=−2π Show that �θ=2π = O(L−2). (Hint: i,i+1 i,i+1 i,i+1. i,i+1 i,i+1 

�θ=0 
i,i+1 is the ground state energy per site.) 

(e) Show that, for θ = 0 mod 2π, 

hΦθ|H0|Φθi − hΦ|H0|Φi = O(L−1). (10) 

pShow that when the ground state has q bosons per site, the ground state is at least 
(nearly) q-fold degenerate. (“Nearly degenerate” means that the ground state energy 
splitting approaches zero as L → ∞.) This implies that when the ground state has an 
irrational number of bosons per site, the ground state is gapless regardless the strength 
and the form of the interaction. 

(The non-linear σ-model field theory corresponds to this case. This result was first ob-
tained in E. Lieb, T. Schultz, and D. Mattis, Annals of Physics 16, 407 (1961).) 

Term paper 

The term paper is about four pages. It may be a short review article or a short article about 
a problem you worked on. The goal is to tell a story, such as an experimental phenomenon, a 
theoretical frame work, etc. 

Please e-mail me your topic (with subject line: 8.513 term paper topic). The term paper is due 
on Dec 9 (you upload your term paper to canvas). You are encouraged to send me a draft around 
Nov 30 (with subject line: 8.513 term paper draft), so I can give some feedback. 

Some possible term paper topics: 
1. Magnetic orders and their spin waves. 
2. Boltzmann transport equation for bands with Berry curvature. 
3. Chern insulators (IQH states) and edge states. 
4. Graphene and Dirac fermions (and how to gap them). 
4. Bilayer Graphene and its band structure. 
5. Weyl semi metals. 
8. Fractional quantum Hall states. 
9. Conformal field theories 
11. Haldane phase (or AKLT state) of spin-1 chain. 
12. Topological superconductors and Majorana zero modes. 
13. Quantum critical point and critical exponents. 
14. Or any other topic in condensed matter physics. 
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