8.513 Problem Set # 9

Problems:

1. Gapless chiral edge model of a Chern insulator (20 pts)

The electrons in graphene near one of the Dirac point, the K-point in BZ, are described by
a Hamiltonian (in real space)

Hy = —ivh(cY0, 4+ 0%0y) (1)

P1(x)
Ya(x)

The Hamiltonian acts on two-component wave function ¥(x) = < ) The energy eigen-

function is given by

HygV = —ivh(0Y0, + 0%0y)¥(x) = eV (x). (2)

One the other hand, the electrons near the other Dirac point, the K’-point in BZ, are described
by a Hamiltonian (in real space)

Hyr = —ivh(c¥0, — 0°8,) (3)

Note the different handness.

If the two sites in the unit cell of graphene have different potentials V' and —V (as in Boron
Nitride), the Dirac fermion near K and K’ will be described by

H;;:ivial = —ivh(c¥0, + Umay) +Vo*
HEY = _ioh(0Y0, — 0%8y) + Vo© W

Now, the conduction band and valence band no longer tough at the K and K’ point, and the
system becomes a trivial insulator.

However, in the Haldane model, the Dirac fermion near K and K’ will be described by

Hpem = —ivh(0¥0, 4 0%9,) + V3t'o*
HEem = —ivh(0¥0, — 0%8,) — V3t'c* (5)

Like the Vo*-terms above, the t'o*-terms also open an energy gap and the conduction band
and valence band no longer tough at the K and K’ point. But in this case, the system
becomes a Chern insulator.

We see that the difference between the trivial insulator and the Chern insulator is that the
“mass” term (ie the o* term) of the Dirac fermions at K and K’ point have different signs.
For the trivial insulator, the sign of the mass term is +, +. For the Chern insulator, the sign
of the mass term is +, —. In other words, if we change the sign of the Dirac fermion mass
term at K’ from + to —, we will change a trivial insulator to a Chern insulator.

In this problem, we will consider a domain wall between a trivial insulator and a Chern
insulator by changing the mass term (the o term) for positive mass to negative mass for the
Dirac fermions at K’-point. By solving the Dirac equation with spatial dependent mass term,
we can derive the gapless chiral edge modes on the domain wall between a trivial insulator
and a Chern insulator.



Let us consider the Hamiltonian for the Dirac fermions near the K’-point with a spatial
dependent mass m(y):

Hyr = —ivh(0*0y — 6¥0y) + m(y)o®. (6)

To simply the later calculations, we have made a cyclic shift to the o-matrix: ¢* — o¥, ¥ —

0*, 0% — o®. For simplicity, we choose m(y) =y and vh =1

HK’ = —i(O'Zax — O'yay) + yax. (7)

The y > 0 region corresponds to a trivial insulator and the y < 0 region corresponds to a
Chern insulator. The eigenstates of Hgs near the zero energy will correspond to the gapless
edge states (assuming the chemical potential, ie the Fermi energy, is chosen to be p = Ep = 0).
(Note that near K-point, Hx has no eigenstates near the zero energy due to the gap, and
hence does not contribute to gapless edge modes).

Now we look for the eigenstate of Hgr, VU(z,y), with energy e

it 0, =70, +yorwle) = (5% B v = evan. @

Due to the translation symmetry in the x-direction, the eigenstate has a form

W(x,y) = Wi (y) (9)
where the two-component wave function ¥ (y) only depends on .

(a) Show that, for each fixed k, there are two eigenfunctions of the form

. . a1y?
\IJ(w,y) _ ellmllfk;(y) _ elkz <#601 )

Wep) = o) = (D) (10)

Hec2y?

Find the eigenfunctions and show that one of them is not normalizable and should be
dropped.

(b) Find the energy eigenvalue €(k) as a function of k. You will see that there is only one
chiral mode near Fermi energy Er = 0.
(If we did not drop the eigenfunctions that are not normalizable, we would have two
gapless modes, one right-mover and one left-mover.)

(c) The Hamiltonian (7) also has other bands. Describe and sketch the dispersion relations
of those bands.
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