## Squeezed states

## 1. Squeeze operators.

Consider a unitary operator $U(\theta)=\exp \left(\theta\left(\hat{a} \widehat{a}-\widehat{a}^{+} \widehat{a}^{+}\right) / 2\right)$.
a) Prove that

$$
\begin{equation*}
U^{+}(\theta) \widehat{a} U(\theta)=\cosh \theta \widehat{a}-\sinh \theta \widehat{a}^{+}, \quad U^{+}(\theta) a^{+} U(\theta)=\cosh \theta \widehat{a}^{+}-\sinh \theta \widehat{a} \tag{1}
\end{equation*}
$$

(Hint: use the operator expansion theorem, Problem 1 a), PS\#1). From that derive the transformation rule for the coordinate and momentum operators,

$$
\begin{equation*}
U^{+}(\theta) \widehat{q} U(\theta)=e^{-\theta} \widehat{q}, \quad U^{+}(\theta) \widehat{p} U(\theta)=e^{\theta} \widehat{p} \tag{2}
\end{equation*}
$$

b) To show that the operator $U(\theta)$, applied to the vacuum state $|0\rangle$, generates a squeezed state, calculate the coordinate and momentum uncertainty, $\left\langle\delta q^{2}\right\rangle,\left\langle\delta p^{2}\right\rangle$, and show that the uncertainty product equals $\frac{1}{2} \hbar$, independent of $\theta$.
c) To characterize the time evolution of the state $\psi_{0}=U(\theta)|0\rangle$, formally given by $\psi(t)=e^{-i \mathcal{H} t / \hbar} \psi_{0}$, find the variance matrix

$$
\left(\begin{array}{cc}
\left\langle\widehat{q}^{2}\right\rangle_{\psi(t)} & \left\langle\frac{1}{2}\{\widehat{q}, \widehat{p}\}_{+}\right\rangle_{\psi(t)}  \tag{3}\\
\left\langle\frac{1}{2}\{\widehat{q}, \widehat{p}\}_{+}\right\rangle_{\psi(t)} & \left\langle\widehat{p}^{2}\right\rangle_{\psi(t)}
\end{array}\right)
$$

time dependence. (Here the expectation values $\langle\ldots\rangle_{\psi(t)}=\langle\psi(t)| \ldots|\psi(t)\rangle$, and $\{\widehat{q}, \widehat{p}\}_{+}=\widehat{q} \widehat{p}+\widehat{p} \widehat{q}$.)

## 2. Time-dependent states of a harmonic oscillator.

Consider a harmonic oscillator with a time-dependent frequency,

$$
\begin{equation*}
\mathcal{H}(t)=\frac{p^{2}}{2 m}+\frac{m \omega^{2}(t)}{2} q^{2} \tag{4}
\end{equation*}
$$

a) Suppose that $\omega(t)$ is a given function of time. Look for a solution of the Schrödinger evolution equation $i \hbar \partial_{t} \psi=\mathcal{H}(t) \psi$ of a gaussian form,

$$
\begin{equation*}
\psi(q, t)=A(t) \exp \left(-\alpha(t) q^{2} / 2\right) \tag{5}
\end{equation*}
$$

From the consistency requirement for such an ansatz, obtain a nonlinear differential equation that relates the time-dependent $\alpha(t)$ with $\omega(t)$.
b) Show that a squeezed state time evolution can be obtained from the condition

$$
\begin{equation*}
(P(t) \widehat{q}-Q(t) \widehat{p}) \psi(t)=0 \tag{6}
\end{equation*}
$$

where $P(t)$ and $Q(t)$ are complex solutions of the classical Hamilton equations $\dot{Q}=P / m, \dot{P}=$ $-m \omega^{2} Q$.

The equations for $P$ and $Q$ are linear, while the equation for $\alpha(t)$ found in part a) is nonlinear. To establish a connection between the two methods, find a substitution that turns the equation for $\alpha(t)$ into a linear equation.
c) Consider a harmonic oscillator initially in the ground state. The parabolic potential is abruptly removed at $t=0$, and then restored at $t=\tau$. Find the state at $0<t<\tau$ and at $t>\tau$.
d) A popular practical method of producing squeezed states involves parametric resonance which takes place when the parameters of the oscillator are externally varied at a frequency close to twice the unperturbed normal frequency,

$$
\begin{equation*}
\omega^{2}(t)=\omega_{0}^{2}+\lambda \cos \Omega t, \quad \Omega=2 \omega_{0} \tag{7}
\end{equation*}
$$

Taking the oscillator initially in the ground state and assuming small $\lambda$, obtain the time dependence of $P(t), Q(t)$.

A note on weakly perturbed oscillator: At small $\lambda$, it is convenient to look for a solution of the equation $\ddot{Q}+\omega^{2}(t) Q=0$ in the form $Q(t)=A(t) \cos \omega_{0} t+B(t) \sin \omega_{0} t$. For unperturbed harmonic oscillator, at $\lambda=0$, the solution is given by constant $A, B$. Accordingly, for a weakly perturbed oscillator, the leading time-dependence $A(t), B(t)$ should be slow. Based on this intuition, derive the differential equations for $A(t), B(t)$ by discarding the rapidly oscillating terms (argue that their effect is negligible).

To analyze wavepacket evolution, from the solution $P(t), Q(t)$ find the parameter $\alpha(t)$. Qualitatively, sketch the width of the wavepacket as a function of time.

## 3. The phase-space density of a squeezed state.

a) Show that the Wigner function $W(q, p)$ of a squeezed state is a gaussian distribution in the phase space.
b) For a general gaussian distribution $P(x) \propto \exp \left(-\frac{1}{2} \sum_{i j=1}^{n} D_{i j} x_{i} x_{j}\right)$ of an $n$-component variable $x_{i}$, show that

$$
\begin{equation*}
D_{i j}=\left(M^{-1}\right)_{i j}, \quad M_{i j}=\left\langle x_{i} x_{j}\right\rangle \tag{8}
\end{equation*}
$$

In other words, the matrix $D$ is fully characterized by the variance matrix $M$.
Consider the Wigner function $W(q, p)$ of a squeezed state. Using the result of Problem 1, part c), find the time dependence $M(t)$ and $D(t)$.
c) For the states obtained in Problem 2, parts c) and d), reconstruct and qualitatively describe the time evolution of the phase-space distribution $W(q, p)$. You may find it useful to use numerics for visualization.

