
������ Many�body phenomena in condensed matter and atomic physics Last modi�ed� September ��� ���� 

� Lecture �� Coherent States� 

We start the course with the discussion of coherent states� These states are of interest 

because they provide 

� a method to describe on equal terms both particles and photons� 

� a connection to classical physics �mechanics and electrodynamics�� 

� tools for the construction of path integral� to be discussed later 

The coherent states also provide a natural entry p o i n t into the method of second 

quantization that will be introduced in the next lecture� 

��� Harmonic oscillator� the creation and annihilation operators 

Particle in a parabolic potential� 
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It will be convenient to use nondimensionalized variables q � �q�� p � � h��� p�� so that 

the classical phase volume is rescaled by 
h� Thus we obtain 
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We shall study the Hamiltonian ��� below h a ving in mind the quantum�mechanical particle 

problem� However� later we shall �nd that the quantized electromagnetic �eld is also 

described by a set of harmonic oscillators of the form ���� 

The canonical creation and annihilation operators are de�ned as 
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They can b e used to express q� p and H as follows�
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The operators a and a� obey the commutation relation 
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As a simple application of the operators a and a�� let us reconstruct the main facts 

of the harmonic oscillator quantum mechanics� 

� The ground state j��i� also called vacuum state� provides the lowest possible energy 

expectation value 
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Let us �nd the ground �vacuum� state in the q�representation� Using the units with 

the length � �  � i�e�� q�� p� instead of q� p� w e write 
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This leads to a Gaussian wavefunction 
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�� The higher energy states can be obtained from the ground state� Starting with the 

commutation relations� 
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Subsequently� from �� 

one obtains the eigenstate �� 

�q� � ��q� � � exp ��q� ��� with 

the energy E� 
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where we inserted the normalization factors An� 

The factors An 

can b e determined from 
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form an orthonormal complete set of functions� providing a basis in the oscillator Hilbert 

space� The ground state j�i is also known as the vacuum state� 

�� The operators a and a� written as matrices in the basis of states ��� have nonzero 

matrix elements only between the states jni and jn � i� 
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while all other matrix elements are zero� 

��� It is convenient to de�ne the so�called number operator n � a� a which counts 

the numb e r of energy quanta in the QM particle problem� or the numb e r of photons for 

quantized E�M �eld� In the energy basis jni� t h e numb e r operator is diagonal� 
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��� De�nition of coherent states� 

The coherent states are de�ned as eigenstates of the operator a� 

ajvi � vjvi ���� 

where v is a complex parameter� Expanded in the energy basis ���� jvi � 
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�As an example� consider the distribution of the numb e r of quanta n � a�a in a 

coherent state� Since �njni � njni� the distribution is given by 
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This is a Poisson distribution with the mean 
n � jvj� � 

��� The quasiclassical interpretation of coherent states 

As we shall see below� the coherent states represent the points of the classical phase space 

�q� p �� This can b e conjectured most easily from their time dependence� Applying the 

Schr�odinger equation i�t 

� � H� to the numb e r states� we have 
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v�t� � e�i�t v ���� 

This de�nes a circular trajectory in the complex v plane� suggesting the correspondence 

with classical coordinate and momentum� 
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where c is a scaling factor� The relation of coherent states with the p o i n ts in a classical 

phase space will be clari�ed b e l o w� 

Let us �nd the form of a coherent state in the q�representation� �v 

�q� � hqjvi� As 

before� we use the units in which the length � �  � and write 
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with v��� � 

p
�v�� � The probability j�v 

�q�j� has a form of a gaussian centered at q � Re��v�� 

which agrees with the above interpretation of v as a p oin t in the phase space �with the 
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A more detailed picture of the phase�space density is provided by the Wigner distri�
bution function Z �   
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where �	 is the density matrix� For a pure state ��q�� the density matrix in position space 
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The interpretation of the Wigner function as a phase�space density is supported by the 

following observations� One can check that the function ���� is real and normalized to 

unity� Also� the coordinate and momentum distributions� obtained by integrating over 

the conjugate variable� are reproduced correctly� The distribution in q is 
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which is equal to j��q�j� for a pure state� while the distribution in p is 
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For a coherent state jvi� the Wigner function is given by 
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with v�� � 
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e�i�tv�in time as if carried by the classical harmonic oscillator phase �ow� Since v�t� � 

the center of the gaussian packet is circling around the phase space origin� 
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For any jvi� the width of the Wigner distribution is the same as for the vacuum state 

j�i� Thus one can conclude that a coherent state can be thought o f a s a displaced vacuum 

state� This interpretation will be substantiated in Problem �� PS�� 
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��� Coherent states vector algebra 

Here we discuss the the vector space propeties of coeherent states� Normally� the states 

appearing in quantum mechanics are orthogonal� or can b e made orthogonal in some 

natural way� which provides an orthonormal basis in Hilbert space� The situation with 

coherent states is quite di�erent� 

Let us start with evaluating the overlap� 
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which shows that the coherent states are not orthogonal� On the other hand� Eq����� 

gives overlap decreasing exponentially as a function of the distance b e t ween u and v in 

the complex plane� 
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For generic classical states� juj� jvj � � the overlap is very small� which is consistent with 

the intuition that di�erent classical states are orthogonal in the quantum mechanical sense� 

��Recalling the interpretation of the complex v plane as a phase space� q� � v� � p� � v � w e 

see that the overlap falls to zero at the length scale of the order of the wavepacket width 

set by Planck s constant� i�e� by the uncertainty relation� �q � � � p
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Another property of coherent states is completeness in the vector algebra sense� �A set 

of vectors is called complete if linear combinations of these vectors span the entire vector 

space�� The property is seen most readily from the formula know a s u n i t y decomposition� 
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Proof can be obtained by e v aluating the matrix elements of the operator on the left hand 

side of Eq� ���� between the numb e r states 
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Using the formula ����� one can express any operator in terms of coherent states� 
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�with the matrix elements M �u� v� � hujM jvi� This formula can be useful in calculations� 

as well as in formal manipulations �we shall use it later to derive F eynman path integral�� 

As another application of Eq� ����� let show that the coherent states form an over�
complete set� i�e� they are not linearly independent� Indeed� by writing 
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we express the state jvi as a superposition of the states jui with ju � vj � � 

The overcompleteness ���� should not come as a surprise� The coherent states� pa�
rameterized by complex numbers� form a continuum� and thus there are way too many 

of them to form an a set of independent vectors� In contrast� the numb e r states� which 

provide a basis of the oscillator Hilbert space� are a countable set� 

To summarize� the coherent states are non�orthogonal and form an over�complete set� 

There have b e e n many attempts to reduce the numb e r of these states to a !neccessary 

minimum� by identifying a good subset that could serve as a basis� Even though some of 

the proposals are very interesting �e�g� Perelomov lattices�� it is probably more natural to 

use the entire space of coherent states� coping with the overcompleteness and not favoring 

some of the states to the others� 

��� Coordinate and momentum uncertainty 

We already mentioned� while discussing the Wigner function� that the coherent states 

form wavepackets in the phase space of width corresponding to the absolute minimum 

required by the uncertainty relation� Let us estimate coordinate uncertainty of a state 
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The uncertainty does not depend on u� which is consistent with the observations made 

using Wigner function� Similarly� for momentum uncertainty� 
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which is also independent o f u� The uncertainty product h�p��i���h�q��i��� equals 

� h� which 
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is the lower bound required by the uncertainty relation� Below w e shall see that coherent 

states can be naturally generalized to a broader class of states that minimize uncertainty 

product� 
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unit cell is greater than ��� h� The borderline lattices� 

having the unit cell area equal to ���h� are overcomplete just by one vector� After any single vector is 

removed from such a lattice� it becomes a complete set� 
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