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1. THE MASTER EQUATION APPROACH 

The master equation corresponds to the statement that the probability of being in a given 
state changes depending on the probabilities of transition to and from any other state in 
the system. It provides the full probability distribution when it can be directly solved. 
Unfortunately, this is not often the case, so we must settle for some of the moments of the 
distribution. These are easily obtained from the generating function, so we will work with 
the master equation in a form in which it depends on the generating function rather than 
the distribution. 

The genetic network is defined by N state variables n1 .. nN and M rate constants k1 .. kM. 
The variables denote the number of copies of a certain chemical species such as mRNAs 
or proteins. Before applying the master equation approach to determine the noise 
properties of a genetic network we will start by obtaining the master equation in the 
generating function form for some elementary chemical equations: 

Synthesis from a template 

In numerous genetic reactions, such as transcription and translation, mRNAs and proteins 
are synthesized from a template (DNA and mRNA, respectively). After synthesis the 
number of templates is not changed. The corresponding reaction is therefore: 

A k→ A + B 

−1Molecule A produces molecule B at a rate k (in units of ( ionconcentrat × time) ). The 
master equation describes how the probability to be in state [n1, n2] (n1 A molecules, n2 B 
molecules) at time t changes in time. For the reaction above: 

n p , n ,t) − = n p kn , n ,t) + n p kn , n − ,1 t)& ( ( (1 2 1 1 2 1 1 2 

The first term reflects a transition from state [n1, n2] to state [n1, n2+1] and therefore 
(leads to a decrease in n p , n ,t) . The second term denotes the transition [n1, n2-1] → [n1,1 2 

(n2] and leads to an increased n p , n ,t) . The master equation above is linear and can be 1 2 

solved for the moments by constructing the moment generating function. In general for N 
system variables the moment generating function is given by: 

n1 nN (z F 1 , z2 ,..., z , t) = ∑ z1 z2 
n2 ...zN n p 1 , n2 ,..., n , t)( N N 

n1 ,n2 ,...,nN , 
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where the sum runs over all possible states for each ni (in this case, from 0 to ∞ ). 
This function has the following useful properties: 

∂ 2 F ∂ 2 F∂FF = ,1 = , 
∂zi 

2 = ni (n −1) , = n n j ,ni i i1 ∂ ∂ z jzi∂zi 1 1 1 

where  means that the function is evaluated at zj = 1 for all j. These expressions justify
1 

the name “moment generating”:  we can obtain the moments of the probability 
distribution by evaluating the partial derivatives of the function. 

Multiplying the master equation above by z1 
n1 z2 

n2 on both sides gives: 

n1 n2 (& ( (∑ z1 
n1 z2 

n2 n p 1 , n , t) − = k ∑ z1 
n1 z2 

n2 n p n 1 , n , t) + k ∑ z1 z2 n p n 1 , n − ,1 t)2 1 2 1 2 
n1 ,n2 n1 ,n2 n1 ,n2 

This equation can be simplified significantly by realizing that: 

∂F ∂F 
=∑( z n n1 −1 ) n p , n , t) ⇒ z1 ∂z1 

=∑ z n 1 n p , n , t)
∂z1 n1 

1 1 ( 1 2 1 
n1 ( 1 2 
 

n1
 

n1 n2 (∑ z n 1 z2 n p , n − ,1 t) = z1 ∑( z n )zn2 n p , n − ,1 t)n1 −1 
2 (1 1 2 1 1 1 2
 


n1 = , 0 n2 =0 n1 = , 0 n2 =−1
 


∂F∑( z n n1 −1 )zn '2 +1 n p , n' , t) = z z 2 ∂z1 

= z1 1 1 2 ( 1 2 1 
n1 = , 0 n '2 =0 

where the change in the lower limit of the sum for n2 is allowed because n p ,− ,1 t) = .0 ( 1 

This leads to: 

F& (z , z2 ,t) = kz (z −1) ∂F 
∂z1 1 2 
 

1 
 

In the special case of synthesis from a fixed number of templates (n1 = n), the equation 
for the moment generating function reduces to: 

F& (z , t) = kn(z −1)F2 2 

This equation can be explicitly solved, but in itself it does not represent the full process. 
We therefore will obtain the expressions for the other terms before combining them to 
model a real situation. 

Degradation 

Now consider the degradation reaction: 
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→ 0 .B γ 

This reaction can represent two different processes: degradation, where molecule B is 
converted into a species which is not part of the subset of interest, and dilution, where it 
is physically separated from the volume of interest. In latter context γ is the degradation 
rate and ln(2)/γ the half-life of the molecule. The master equation for this reaction is: 

& ( ( (n p ,t) − = γ n p n , t) +γ (n + 1) n p + ,1 t)1 1 1 1 1 

Using the same strategy as above the time evolution of the moment generation function 
yields: 

∂F& (z F 1, t) − = γ (z − 1)1 
 ∂z1 
 

Forward reaction, conservation of total number of molecules 

Now consider the reaction: 

A k→ B 

where no + n1 = n = const.  Since the total number n is conserved, the system is defined by 
only one variable. We will use n2 as the single variable to define this system. For the 
reaction above: 

n p , t) − = n k − n ) n p , t) + n k − n + 1) n p − ,1 t)& ( ( ( ( (2 2 2 2 2 

This leads1 to: 

∂F  ∂F  ∂F& ( ( (z F 2 , t) − = knF + kz2 ∂z2 

+ n k + 1) F z − kz2  z2 ∂z2 

+ F  = z kn 2 − 1)F − kz2 (z − 1)2 2 
  ∂z1 

Based on these elementary reactions larger chemical networks can be built up. The 
results above are summarized in Table 1. 

1 In this case, the sums only go up to n, instead of ∞ . However, the extra terms that appear when applying 
the change of variables cancel with each other. 
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Reaction Type 

 = const., in terms of 
z kn 

← 

→ 

Table 1. Moment generating function equations for elementary reactions. The master 
equation for each reaction type produces different terms which can be combined to 
model more complex processes. 

Noise properties of a constitutively expressed gene 

Based on the results for these elementary reactions the equation for the moment 
generating functions of more complex networks can be easily deduced. First let us 
consider a constitutive expressed gene in a single copy in the chromosome of a 
bacterium. In this case the state of this system at any time is defined by the number of 
mRNA molecules r and number of proteins p for that gene. mRNA molecules are 
synthesized off the template DNA strand at a rate kR and are translated at a rate kP. The 
mRNA and protein degradation are described by the destruction rates γ R and γ P 
respectively (Fig. 1). 

Figure 1. Basic model for constitutive expression of a single gene. Only 
four individual reactions are considered: creation of mRNA from a DNA 
template, creation of proteins from individual mRNA molecules, and the 
degradation/dilution of both species. 
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Based on the results in Table 1 the moment generating function can be deduced directly: 

∂F ∂F ∂F& (z F 1, z , t) = k (z −1)F + z k (z −1) −γ (z1 −1) 
∂z1 

−γ P (z2 −1)2 R 1 P 1 2 ∂z1 
R ∂z2 

The first two terms are the transcription and translation reactions (Table 1, type I) and the 
last two terms model degradation of mRNA and proteins respectively (Table 1, type II). 
Below the equation will be solved for the moments in the steady state ( F& = 0 ). In this 
case: 

∂F ∂F ∂FkR (1− z )F = z k 1(z −1) −γ (z1 −1) 
∂z1 

−γ P (z2 −1)1 P 2 ∂z1 
R ∂z2 

The mean mRNA level r and protein level p are found by taking the derivative with 
respect to z1 and z2 respectively: 

∂2 F∂FkR (1− z ) − F k = [ z k (z −1) −γ (z −1)]∂
2 F 

+ [k (z −1) −γ ]∂F 
−γ P (
 z2 −1)1 P 1 2 R 1 ∂z1

2 P 2 R
∂z1 
R ∂z1 ∂z2∂z1 

evaluating both expressions at z1 = z2 =1 gives: 

kRr 
γ 

=
 
R
 


k k P= R
p 
γ γ P
R 

The results are consistent with the equivalent deterministic system: 

r& r= kR − γ R 

p& r − γ P p= kP 

The fluctuations in mRNA and proteins level are found by differentiating the above 
equations again with respect to z1 and z2 and evaluating at z1 = z2 = 1: 

2r − r 2 = r 

p
rp − r p =
 

1+γ R /γ P 
 

22  kP /γ R +1p p p− = 
1 + γ P /γ R  
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Further moments can be obtained sequentially in this manner. Note that for a random
 
variable with Poissonian distribution, all moments are equal, so the variance over the
 
mean equals one, as is the case for the mRNA in this model. The protein number
 
fluctuates with a higher than poissonian noise, the correction determined primarily by the
 
term kP / γ  (the ”burst size”), which corresponds to the average number of proteins
R 

produced per mRNA [9]. 

In simple cases like this, the moments can also be obtained as a function of time. For a
 
single gene, the noise out of equilibrium can be 40% larger than its steady state value in
 
the limit of short mRNA lifetimes [9]. A more detailed modeling of this process could
 
include more intermediate detailed processes, such as the random steps that a ribosome
 
takes along an mRNA, but most turn out to have little effect when compared in
 
simulations. However, when a repressor or activator is present, its binding and unbinding
 
might have to be included in the model, for this can be a major source of noise. It is in
 
this context that the terms shown in Table 1, type III, are needed. Furthermore, the
 
repressor concentration itself might be fluctuating, in which case we have to consider the
 
entire system of genes.
 

Linearized matrix formulation 

x

The method above can also be used for interacting systems of genes, but solving it is not
 
straightforward unless the connections are linear. Alternatively, if the system is at a
 
stable point in steady state, the interaction can be linearized around the steady state value.
 
A
 
practical way of writing this out is in matrix form. The transition probabilities for species
 

i are given by fi(x1,x2,...,xn) for creation and γi for destruction, and A and Γ are the
 

matrices defined by Aij =
∂fi and Γij = γ iδ ij . Letting x be the vector of chemical 
∂x j x1 , ...x2 

x&species, the linearized macroscopic equations are then given by = (A Γ − ) x . 
Note that since in many cases the macroscopic equations include constant creation terms.
 
If the system is linear it might be necessary to include an additional variable, which is not
 
fluctuating and allows the inclusion of the constant terms in the compact matrix form. As
 
an illustration of this, the matrices for the single gene case are
 

 0 0 0 0 0	 0 
 


A = kR 0 0

 , = Γ 
0 γ R 0 
 . 

 0 kP 0 0 0 γ P 
 

where the state vector is xT = ( p r d ) where d is the gene copy number. This constant , , 
state coordinate needs not to represent an actual chemical; for a system where many
 
species have a constant creation rate, these rates can all be placed in the first column of A
 
(setting d=1 and Γ1 j Γ = j1 = 0 ). An example of this is the matrix for the case of two
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interacting genes, linearized around steady state, with fixed gene copy numbers d1 and d2 
respectively, and where the first gene (r1,p1) represses the second (r2,p2) with transfer 
function f(p1): 

 0 0 0 0 0
 

 
 k d R1 0 0 0 0 

0 0 0 0 0 
0 γ R1 0 0 0  0 kP1 0 0 0 

= Γ 
 
0
A = 
  , 0 γ P1 0 0  ,
 k d R 2 0 d2 

∂f 0 0 0 0 0 γ R 2 0 
 

 2 ∂p1 p1 0 0 0 0 γ P 2  
 0 0 0 kP2 0

 

)− 
∂fwhere kR 2 = f ( p p1 1
 . 
∂p1 
 p1 

Written in terms of these matrices, the master equation in generating function form would 
be 

&F =∑(1− zi )

Γii 

∂F 
−∑ z A 

∂
∂ 

z
F

j 


 

. 
i 

 ∂zi j
ij j 

 

At steady state, F& = 0 , and taking the derivative with respect to zl we obtain: 

2 2 ∂ F ∂F   ∂F0 =∑(1− zi )Γii ∂ ∂ zl 

−∑ z A j 
∂ F 

− Ail ∂zl 
 − Γll −∑ z A j 

∂F 
 zi j

ij lj 
i ∂z j ∂zl 


 ∂zl j ∂z j 

 

Setting all zi=1, we have for each i 

∂F 
−∑ z A j 

∂F 
⇒ 0 = ( − Γ A)∇F = ( − Γ A) x1 ,0 Γ = ii ij 1 

1 j ∂z j∂zi 1 

corresponding to the macroscopic result. Similarly, differentiating again and evaluating at 
zi=1, 

2 2 

0 = 

Γii 

∂ F 
−∑ z A j 

∂ F 
ij ∂ ∂ zl 1 j ∂z j ∂zl zi 

∂F
− Ail ∂zl1 

  ∂ 2 F +  
 

Γll ∂ ∂ zi1   zl 

2 ∂F −∑ z A j 
∂ F 

lj − Ali ∂zi1 j ∂z j ∂zi 1  ,1 

)TT T= (( − Γ A)∇∇ F − AΘF )+ (( − Γ A)∇∇ F − AΘF
1 1 1 1 
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∂where Θij = δ ij ∂zi 

. These linear equations can be solved for the means, variances and 

correlations. 

This approach is very general and the resulting matrix equations can be solved directly2. 
However, even for the case of just two interacting genes this requires a 5x5 matrix 
system as shown, so it gets cumbersome for larger systems even though most entries are 
zero. Using symbolic matrix manipulation software it is straightforward to obtain the 
desired expressions, so for known parameters this is a good method for obtaining values 
without further approximations. 

2. THE LANGEVIN APPROACH 

An alternate approach that allows for a more straightforward interpretation and scales 
easily to different levels of detail is the use of a Langevin equation. 
The Langevin approach consists essentially of adding a noise term to the deterministic 
equations. This noise term can represent the effect of the intrinsic fluctuations [20] or the 
external inputs of the system [21]. 
For x, the concentration of some chemical species, 

(x& = f (x) → x& = f (x) + x q )ε (t) , 

where the random variable ε (t)  is determined by its statistical properties. Formally, this 
can be any random process, but in practice we assume white-noise statistics, which will 
give approximate values for the first two moments. The conditions for white noise are: 

ε (t) = ,0 ε (t)ε (t +τ ) (= τ δ ), 

where  denotes an ensemble average. Since we are interested in the steady state 
fluctuations, we will assume the coefficient of the noise term to be constant3, i.e. 
evaluated at x . 

ss 

For the case of our basic model of the single gene, we have two macroscopic equations 
representing mRNA and protein creation, respectively: 

r& = kR − γ Rr → r& = kR − γ Rr + qrε r 

p& = r k − γ p → p& = r k − γ P p + qpε p ,P P P 

2 This can be summarized in a very practical way [13] in terms of the logarithmic gains to obtain an 
equation which reflects the resulting components of the noise. 
3 For the case where q(x) is not constant, the stochastic differential equation will be understood to follow 
the Stratonovich interpretation [19,22]. This allows a general Fokker-Planck equation to be written in this 
form, but will not be necessary in the cases of interest. 
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where the coefficients of the noise terms are to be determined. Clearly, 
r = kR /γ and p r /γ  from the condition of zero mean for the noise term. R = kP P 

The difference with the steady state δr = r − r  follows the equation 
δr& + γ Rδr = qrε r 

Fourier transforming, we obtain 

r rδr̂(ω) = 
q ε̂  


iω +γ R 
 

,
 

so after multiplying by the complex conjugate and taking the average, 

2 
 
2 
 qr
δr̂(ω) = 2 2ω +γ R 

The steady state fluctuations are given by the inverse Fourier transform with t = 04: 

2 2 ∞
 

2 r = r
δr = 

1 ∞ 

2 

qr 
2 dω = 

q 
∫ x +1 2γ R 

.22π ∫ω +γ R 2πγ R ∞ − 

dx q 2 

∞ − 

But since the production of mRNA is in this model a single step, independent random 
process, it has a Poisson distribution, so the variance equals the mean, which implies 

2 

=
qr kR ⇒ qr 

2 = 2kR .
 2γ R γ R 
 

For the number of proteins, we have 

δp& + γ δp = δr + qpε p ,P 

δp̂(ω) = 
w r ) + qpε̂δ ˆ( p 

iω +γ P 

, 

ˆ* ˆ*but in this case we also need to notice that δˆ(w r )ε p = δˆ(w r ) ε = 0 , since these are p 

two independent random processes with zero mean. So in this case, 

2 
2 2 

2 
δr̂(ω) + q p 

2 
q q prδp̂(ω) = = 2 2 2 2 2 2 2 2 .

ω +γ P (ω +γ )(ω +γ ) + ω +γ PR P 

4 From the Wiener-Khintchine theorem; see [23]. 
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2Using q 2 = 2kR and q p = 2k kR , (since this represents the internal noise and for a r 
 p
γ R
 


fixed number of mRNAs the production of proteins is also a Poissonian process).
 

Performing the inverse transform5,
 


2
 

2 1 ∞ 

r
 
qp 

2 

dω = 2

2 kR  1 1 
 + P
∫ 2 2 2 2 2 2 2  

k k R 
δp = 
2π ∞ − (ω +γ 

q
)(ω +γ ) + ω +γ P (γ R 

kP 

−γ P )γ P 

−
γ R  γ γ RR P P 

Pfor comparison with the previous result, note that p = 
k k R , so this can be rewritten as
γ γ RP 


δp2 = p 


 kP /γ R +1
1+γ P /γ R  

This is identical to the result obtained by the master equation. This method can be readily 
generalized for many interacting genes when the system is fluctuating around a steady 
state. As an example, we will analyze the case where one gene represses a second gene. 
Let y0, y1 be the protein numbers of each gene, and let f( y0) be the rate of creation of the 
second protein as a function of the first. This means that the equations describing this 
system are 

y&0 = k0 − γ 0 y0 , 
( )− γ y .y&1 = y f 0 1 1 

Note that the equations include the entire process of producing a protein, so mRNA 
levels are no longer explicitly calculated. Including the Langevin noise term and looking 
at the fluctuations from steady state, 

δy&0 − = γ δy + q0ε0 ,0 0 

δy&1 = y f ) − f (( y ) − δγ y + q ε ≈ c δy − δγ y1 + q ε ,0 0 1 1 1 1 0 0 1 1 1 

df 
dy

where c0 = and each noise term has the same conditions as before. This 
 
0 
 y0 

linearization is valid at each stable point, but not for transitions between different stable 
points or for limit cycles. For very small numbers n of chemicals this also breaks down, 
because since this processes are mostly Poissonian, the fluctuations are of order n  so a 
Taylor expansion might not be valid. Fourier transforming and taking the square and the 
average as before, we get 

5 1 dω 1 
2π ∫ (ω +γ ) = 

2 γπ 

Γ(n −1/ 2) , where Γ(n) = Γ(n −1)(n −1) , Γ(1) =1 and Γ(1/ 2) = π . 
n 2n−1 Γ( )2 2 n 

10 



7.81/8.591/9.531 Systems Biology – A. van Oudenaarden and Mukund Thattai – MIT– October 2004 

2
 

2
 
 qδŷ0 (ω) = 0 

2 2
ω +γ 0 
 
2
2 2 2 2δŷ0 (ω) + q 2 

q c c0
2 1 
= 0 0 + 

q1=δŷ1(ω) 2 2 2 2 2 2 2 2ω +γ 1 (ω +γ )(ω +γ ) ω +γ 11 0 

The correlation between the genes can also be calculated, from 

2 
2δŷ0 (ω)c0 c0δŷ (w) + q ε  q c δŷ1δŷ0

* 0 = 0 0=  1 1̂ δŷ0
* (w) = 2 2 ,

 iω +γ 1 
 iω +γ 1 (iω +γ )(ω +γ )1 0 

where the term δε ˆ0 
* vanishes because the fluctuations in the first gene areˆ1 y 

independent from the internal fluctuations in the second gene. In many cases, the decay 
time will be determined primarily by the dilution time, so it will be the same for all 
genes. This assumption simplifies the expressions that are obtained upon transforming 
back: 

2 2
 

2
 
 0 0δy = 

1 ∞

∫ω 
q 
+γ 

dω = 
q 

0 2 2 2γ2π ∞ − 

2 2 2 2 2 21 ∞ q c 
+ 

q1 dω = 
q c 

3 
2 0 0
δy1 
 = ∫ 2 2 2 2 2 

0 0 + 
q1 

2π ∞ − (ω +γ ) ω +γ 4γ 2γ 
2 21 ∞ q c q c 2 ∞ (iω −γ ) 

dω = 
q c 

= 0 0 0 0 0 0δy1δy dω = ∫ 20 2 2 2 22π ∫ (iω +γ )(ω +γ ) 2π ∞ − (ω +γ ) 4γ 2 , 
∞ − 

where the irrational part of the integral vanishes because of parity. From our previous 
results we know that for a single gene, 

2q  kPo /γ +1
 
≈ 22 Roδy y y (b +1)⇒ q ≈ 2γ y (b +1) ,= 0 = 0 0 0 0 0 0 02γ 1 + γ /γ Ro  

where bi is the burst size for gene i. For basic Hill-type repression, 

h−1 h−1 2  h 
y y  − hγ2 0 0 = y f =

− k1 y10 h 2   
 Y1/ 2 

 Y k 1/ 2 

( ) = 
1+ (y0 

k 
/
1 

Y1/ 2 )h + B1 ⇒ c0 (1+ (y0 / Y1/ 2 ) )  Y1/ 2  Y1/ 2 1 

where k1+B1 is the maximum creation rate, Y1/2 is the half induction point, h is the Hill 
coefficient and B1 is the basal transcription level. Assuming that the internal noise for the 
second gene alone has the same form, 
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the variance and correlation can be explicitly written as
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γδδ .

Note that we need the parameters of the macroscopic equations plus an “internal”
parameter for each gene, RiPii kb γ/=  which depends on the parameters of the
macroscopic equations for each gene.
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