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VIII Local excitation, global inhibition model

In this lecture we will discuss one of the most frequently used theories to model

biological reactions limited by diffusion. Turing was the first to formulate this problem

mathematically. Gierer and Meinhardt took Turing’s formalisms and applied it to

biological problems. The model described below is therefore often called ‘the Turing-

Gierer-Meinhardt theory’. One of the first models was defined as follows:
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a and i are the concentrations of an activator and an inhibitor. The activator is produced at

a constant rate ra (for example, a leaky promoter) plus a rate that depends on both a and i.

The activator operates as a dimer whereas the inhibitor operates as a monomer. The

synthesis rate of a is proportional to the saturation function Y to reflects the probability to

have an activator dimer present and an inhibitor monomer absent:

i
aconst

iKaK
aK

iK
iK

aK
aKY

ia

a

i

i

a

a
2

2

2

2

2

1
1

11
1

1
×≈

++
=








+

−
+

= [VIII.2]

The approximation above is valid for small concentrations of a and large concentrations

of i. Ka and Ki are the association constants for the activator and inhibitor binding.

Both the activator and inhibitor molecules obey first order decay characterized by γa and

γI, respectively. The last term in equations [VIII.1] reflects the one-dimensional diffusion.

The diffusion coefficient of the activator and inhibitor are Da and Di. The inhibitor is

synthesized at a rate proportional to a2. Apparently the activator enhances the inhibitor

synthesis according to the Hill equation with nH=2. Note that again it is assumed that the

concentration of a is small (with respect to Ka). The system of equations [VIII.1] is an

example of a reaction-diffusion system. Let us analyze [VIII.1] in more detail.
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Dimensionless variables

First we will introduce dimensionless variables to make the algebra simpler. Time will be

normalized to (γa)-1 and the spatial coordinate x will be measured in terms of the distance

that the activator will diffuse in time (γa)-1:
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Substituting this in [VIII.1] yields:
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We still have the freedom to the normalize a and i:
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Substituting this in [VIII.4] gives:
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By choosing
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[VIII.6] finally reduces to:

( ) 2

2
2

2

22

1

s
IPIAQ

τ
I

s
AA

I
AR

τ
A

∂
∂

+−=
∂
∂

∂
∂

+−+=
∂
∂

[VIII.8]



7.81/8.591/9.531 Systems Biology – A. van Oudenaarden – MIT– November 200445

where
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P and Q are a measure of the diffusion coefficient and decay rate relative to the activator

properties. R is the ratio of the autocatalytic activator synthesis (ka) and the constant

synthesis (‘leakyness’, ra).

Spatially homogeneous solutions

Version [VIII.8] only contain three parameters (P,Q,R) whereas [VIII.1] contained 9

parameters. For now let’s try to find a solution to [VIII.8] that is spatially homogeneous

( 0/ =∂∂ s ). In this case, the steady state solution is:
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Is this solution stable? The stability matrix evaluated at the fixed point is:
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Therefore [VIII.10] represents a stable solution when the trace of this matrix is negative

and the determinant is positive:
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As Q is positive by definition [VIII.9] the first inequality characterizes a unique constant

solution that is stable against small spatially homogeneous perturbations.
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Spatially inhomogeneous solutions

Now consider the full system of equations [VIII.8] and explore stability of the system

around the homogeneous solution [VIII.10]:
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Based on [VIII.8] we can write:
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To find the solutions of [VIII.14] we start by guessing a trial function:
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This trial function makes sense since the second derivative of the cosine is the cosine

itself times a constant. Substituting the trial function gives:

IPQARQ
d
Id

I
R
RA

R
R

d
Ad

ˆˆ)1(2
ˆ

ˆ
)1(

ˆ1
1
1ˆ

2

22







 +−+=

+
−






 −

+
−

=

l

l

τ

τ
[VIII.16]

Again this is system of two linear ordinary differential equations that we can test for

stability:
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The latter inequality holds since we impose stability of the homogeneous solution (see

inequality [VIII.12]). The former inequality can be written as:
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For any wavelength l  this is satisfied if:
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Both [VIII.19] and [VIII.12] will certainly hold if P < 1. In other words if the activator

diffuses faster than the inhibitor. In the opposite way, spatial nonuniformity and the

possibility of pattern formation requires the inhibitor to diffuse faster than the activator

(long range inhibition, short range activation).

Conditions for inhomogeneous instability

Let us explore the conditions for inhomogeneous instability. To obtain an instable system

we have to obey the reverse of [VIII.19]:
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where 2l≡α . The function f(α) is a parabola that is concave upward. For f(α) to be

negative the parabola should have two real roots of which at least one is positive. The

roots of f(α) are found by solving:
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The roots of [VIII.21] are therefore both real if:
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According to [VIII.19] this means that both roots are positive and therefore:
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This is the instability condition. So if [VIII.23] is true, f(α) will be negative for certain

values of α. Condition [VIII.23] defines a critical value for R. For R>Rc [VIII.23] holds.
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In the following discussion we will assume strong autocatalytic reaction (R>>1). In that

case [VIII.23] reduces to:
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This means that
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The ratio 2/1)/( aaD γ  has units of length and can be interpreted as the a typical distance

that activator molecules diffusion before they decay. This distance is often called the

activator range. Equation [VIII.26] tells us that it is necessary for the instability of the

uniform state that the inhibition range is about 2.5 times larger than the activator range.


