Problem Set 3
Assigned:
10.19.04

Due in class
Due:
11.02.04

Several protein expression levels in plant and animal cells go through a daily cycle, driven by exposure to sunlight during the day and darkness at night. However, even in complete darkness, these expression levels oscillate with an intrinsic period of about 24 hours. The systems which drive these oscillations are known as circadian clocks. At the heart of most of these systems is a pair of transcriptionally regulated proteins: an activator (X) and an inhibitor (Y). In this problem set, we will see how such a simple system can be made to generate oscillations. We consider two possible system architectures (arrows represent activation, blunt ends represent inhibition):
(A)

(B)

The corresponding dynamical equations are (using $x=[X]$ and $y=[Y]$):
(A)

$$
\frac{d x}{d t}=v_{x}+k_{x} \frac{A_{1}}{A_{1}+y}-\gamma_{x} x
$$

$$
\frac{d y}{d t}=v_{y}+k_{y} \frac{x}{A_{2}+x}-\gamma_{y} y
$$

$$
\begin{equation*}
\frac{d x}{d t}=v_{x}+k_{x} \frac{x^{2}}{A_{3}^{2}+x^{2}} \frac{A_{1}}{A_{1}+y}-\gamma_{x} x \tag{B}
\end{equation*}
$$

$$
\frac{d y}{d t}=v_{y}+k_{y} \frac{x}{A_{2}+x}-\gamma_{y} y
$$

1. Biochemical interpretation of dynamical equations
a. Identify the parameters corresponding to basal transcription rate, maximal transcription rate, and degradation rate.
b. We have assumed the following: for both (A) and (B), the X promoter is inactivated by the binding of a single molecule of Y, and the Y promoter is activated by the binding of a single molecule of X. In addition, for (B), the X promoter is activated by the cooperative binding of two molecules of X. The various fractions that appear in the dynamical equations represent the fractions of promoters that are active under these conditions. Give a biochemical interpretation of each of these fractions.
2. Normalization of units. Assume that $A_{2} \gg x$. Define new time and concentration units so that $\bar{t}=\gamma_{y} t, \bar{x}=x / A_{3}$, and $\bar{y}=y / A_{1}$. The dynamical equations can then be written in the following form:
(A) $\frac{d \bar{x}}{d \bar{t}}=\bar{\gamma}_{x}\left(\bar{v}_{x}+\bar{k}_{x} \frac{1}{1+\bar{y}}-\bar{x}\right)$
$\frac{d \bar{y}}{d \bar{t}}=\bar{v}_{y}+\bar{k}_{y} \bar{x}-\bar{y}$
(B)

$$
\begin{aligned}
& \frac{d \bar{x}}{d \bar{t}}=\bar{\gamma}_{x}\left(\bar{v}_{x}+\bar{k}_{x} \frac{\bar{x}^{2}}{1+\bar{x}^{2}} \frac{1}{1+\bar{y}}-\bar{x}\right) \\
& \frac{d \bar{y}}{d \bar{t}}=\bar{v}_{y}+\bar{k}_{y} \bar{x}-\bar{y}
\end{aligned}
$$

(0)

