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Final Problem Set Assigned: 11.29.04 
Due in class Due: 12.09.04 

Dictyostelium amoebae are free living cells with a remarkable twist: under the stress of starvation, 
large numbers of amoebae are able to collect together to form a single multi-cellular organism (Fig. 1). 
The entire process begins when starving amoebae emit pulses of the chemoattractant cAMP, inducing 
the surrounding cells to move in their direction and to secrete cAMP themselves. This process 
generates outgoing spiral waves of cAMP which direct the entire population towards the original 
source (Fig. 2). We will try to understand the origin of and response to these cAMP waves. 

Images removed due to copyright considerations. 

1. Chemical kinetics of cAMP signaling 

Two species of cAMP receptors exist in the Dictyostelium cell membrane: the ‘activator’ A, and the 
‘inhibitor’ I, both of which act on a third protein R. When bound to cAMP, a pair of A molecules 
catalyzes the conversion of R to an active form R*, and a pair of I molecules catalyzes the reverse 
reaction (Fig. 3). 

(5) a. The initial binding of cAMP (C) to its receptors is described by: 

kA 
+ kI 

+ 

A + C AC I + C IC . 
kA 
− kI 

− 

Write down equations giving the time evolution of [AC] and [IC]. Now assume that [AC] << 
[Atot], and [IC] << [Itot]; let a ≡ [ AC] , i ≡ [IC] , and c ≡ [C] . By making a convenient choice 
of units, show that these equations can be written in the form 

da 
= k − (c − a) di 

= k − (c − i) . (1)
dt A dt I 
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(5) b.	 The reactions involving activation and inactivation of R reach a rapid equilibrium: 

2kR 
+⋅ a 

R R *. 
2kR 

−⋅ i 

The a2 and i2 terms arise because it takes two molecules of AC or IC to catalyze these 
conversion reactions. Setting β = k − / k + , find an expression for the rapid equilibrium value R R 

of r ≡ [R*]  in terms of a, i, and [Rtot]. 

2. Positive feedback and oscillations 

The molecule R is an enzyme known as adenylate cyclase, which in its active form catalyzes the 
conversion of ATP into cAMP in the cytoplasm. The presence of extracellular cAMP thus stimulates 
the synthesis of intracellular cAMP, which in turn is secreted into the environment, creating a positive 
feedback loop (Fig. 3). Let c1 ≡ [cAMP ] ; let the rate of cytoplasmic cAMP synthesis be r k ; andin	 1 

let the rate constant for its secretion be k0. cAMP is continuously degraded by phosphodiesterase 
enzymes both inside and outside the cell, with rate constants γ 1 and γ 0, respectively. The entire 
network is described by the following equations: 

dcdc1 = r k − (γ	 + k0 )c = c k 1 −γ 0 c . (2)
dt 1 1 1 dt 0 

(5) a.	 Assuming that the concentrations c1 and a reach rapid equilibrium, reduce the four equations 
−in (1) and (2) to two equations for the slow variables c and i. Let k ≡ kI . Show explicitly the 

choice of units required to produce the following simplified form: 

dc c 2	 di (= − c = c k − i) .	 (3)2dt β ⋅ i + c 2	 dt 

(10)	 b. When Dictyostelium is grown in liquid medium, extracellular cAMP is well stirred, making its 
concentration uniform over space. However, under such conditions, the cAMP concentration 
is known to oscillate over time. Find the conditions on k and β so that the system is 
oscillatory. 

(5)	 c. On a graph of i vs. c, plot the nullclines and simulate the time evolution of the system for an 
oscillatory case. 

(5)	 d. Suppose it only required a single molecule of AC or IC in order to catalyze the R conversion 
reactions. Comment on the stability of the system in this case. 
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3. Diffusion and cAMP waves 

When cells are grown on a plate, cAMP diffusion is slow, and the extracellular cAMP concentration is 
no longer uniform. Consider a plate on which there exists a uniformly distributed population of cells. 
Each cell senses cAMP in its environment, and secretes fresh cAMP in response. This new batch of 
cAMP is able to reach neighboring cells, stimulating them to synthesize more cAMP, and so on. The 
situation is similar to one in which a number of radio transmitter towers (cells) are used to detect, 
amplify, and re-broadcast a weak radio signal (cAMP). The cAMP concentration now varies over 
space as well as time. For simplicity, we will analyze a 1-dimensional case, with cells uniformly 
distributed along a line. We can assume that the cells have fixed positions over the timescales 
considered, because their chemotaxis is relatively slow. This system obeys the equations 

∂c c 2 ∂ 2 c	 ∂i 
= − c + D	 = c k − i) .(2∂t β ⋅ i + c 2 ∂x 2	 ∂t 

We have provided MATLAB code which simulates the time evolution of a reaction-diffusion system. 
Modify the code to implement these equations. The system is assumed to extend from x = -1 to x = +1, 
with no flow at the boundaries. Use the following initial conditions: 

t x c = 0) = exp(−x 2 / 2σ )	 t x i = 0) = i0 .( ,	 2 ( , 

That is, provide an initial pulse of cAMP centered at the origin, and some non-zero amount of 
inhibitor activity in all cells. 

(10) a.	 Use the following parameters: β = 4 ; k = 5.0 ; D = 10−7 ; σ = 1.0 ; i0 = 1.0 . Run the 
simulation to see the emergence of cAMP waves emanating from the origin. Plot out a typical 
cAMP profile, indicating the direction of motion of the waves. 

(5)	 b. Run the simulation again, this time with a k value which produces a non-oscillating system. 
Describe the typical cAMP profile once the transients have died out. Can cells find the initial 
source of cAMP based on this type of profile? 

(5)	 c. A simple concentration gradient would allow cells to find the cAMP source. Why do you 
think Dictyostelium uses waves of cAMP rather than a gradient in order to trigger cell 
aggregation? 

4. Receptor clustering and signal amplification 

The cells must now sense and move towards the source of the cAMP waves. It is unknown precisely 
how the amoebae are able convert the small front-to-back difference in cAMP concentration into the 
large output signal necessary to drive cell motion. However, a similar amplification of small temporal 
changes in ligand concentration into large changes in receptor activity has been observed in bacterial 
chemotaxis networks. We will now discuss a receptor clustering model that has been proposed in order 
to explain this amplification. Consider a receptor molecule R that is activated by the binding of some 
ligand L. Let α = 0,1 represent the activity of the receptor. Thus, 

k 
+ 

R + L RL 
(α =0) k (α =1)

− 
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e 
(5) a. The probability that the system will be found in a state with energy E is proportional to 

− E / kT . Show that the energy of the receptor molecule may be written in the form 

− E / kT = A ⋅α . 

By calculating the mean activity α  and equating this to the value known from chemical 
kinetics, find an expression for A in terms of L, k+ and k-.. 

(5)	 b. Now consider a lattice of receptors Ri, each with activity α i. Suppose that an active receptor is 
able to activate nearby receptors even if they are not ligand-bound. The energy of Ri can then 
be written as 

n− Ei / kT = A ⋅α + B Σ ⋅ j= 1 (α i − 2
1 )(α j − 2

1 )i 

where the sum over j is a sum over the n nearest neighbors of Ri. How does the state of the 
neighboring receptors influence the energy of Ri? 

(5) c.	 Assume that the activity of each neighboring receptor may be approximated by its mean value. 
nThat is, Σ j = 1α j	 ≅ nα . By substituting this expression into the above equation, find an 

expression for the mean activity α  of receptor Ri.i

(5)	 d. There is nothing special about the particular receptor Ri: our calculations could equally have 
been applied to any other receptor in the system. Therefore, the mean activity α  must be i

equal to the mean activity α of the neighboring receptors. Apply this consistency condition to 
find an equation for α , and show how this equation may be solved graphically. (Hint: it is 
easier to work with the variable s = α -1/2.) 

(10)	 e. Explore the possible system responses as a function of the parameters A and B. For low values 
of B, the equation has a single solution for all A values. For high values of B, the system goes 
from having one, to three, then back to one solution as A is swept from -∞ to +∞ . Find the 
critical value Bc which separates these two behaviors. Explain why the system response 
changes as this critical value is crossed. Which regime is more relevant for understanding 
signaling? 

(5) f.	 Assuming B < Bc, calculate the logarithmic amplification 

∂ ln(α ) L ∂αG = = ,
∂ ln(L) α ∂ L L0L0 

where L0 = k- / k+ is the dissociation constant for ligand-receptor binding. Plot G as a function 
of B, and verify that it approaches the correct limit as B approaches zero. We see that the 
amplification can be made arbitrarily large by appropriately tuning B. What is the possible 
disadvantage of doing this? 

(10)	 g. Based on published experimental data, estimate the logarithmic amplification at each stage of 
the Escherichia coli chemotaxis network. Is there any evidence that receptor clustering 
contributes to this amplification? 
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