Problem Set 2 Due in class

Assigned:	10.06.04
Due:	10.19.04

1. Biochemistry of the chemotaxis network.

The *E. coli* chemotaxis network is represented here in simplified form. T represents the Tar receptor, and L the ligand or attractant. The receptor can by modified by phosphorylation (subscript P) or methylation (subscripts 2 or 3).

(10) *a.* The Tar receptor binds an extracellular ligand L according to

$$L + T \xleftarrow{k_L^+}{k_L^-} LT$$
, with $K_L = \frac{k_L^+}{k_L^-}$. Calculate the fraction f_L of bound receptor.

(10)

b.

We now assume that the ligand binding reaction is in rapid equilibrium, and only consider total amounts of each modified form of receptor. For example,

 $T_{3P}^{tot} = T_{3P} + LT_{3P}$, etc. How would you calculate the effective rate constants $k_a,...,k_d$ and $k_{-a},...,k_{-d}$ between these total concentration pools in terms of the rate constants of the original methylation /demethylation and phosphorylation/dephosphorylation reactions?

(10) *c*. The assumed rates in the models of Spiro *et al.* and Barkai *et al.* are shown in the table below. Write down explicitly the effective rate constants for each model, in terms of the symbols listed in the table.

Spiro model			Barkai model		
	L-unbound	L-bound		L-unbound	L-bound
<i>k</i> _a	k_8	0	<i>k</i> _a	0	0
<i>k</i> - <i>a</i>	k _y	k _y	<i>k</i> - <i>a</i>	k_0	k_0
k _b	3 <i>k</i> ₈	$1.1 k_8$	k _b	<i>k</i> _{<i>p</i>1}	<i>k</i> _{<i>p</i>2}
<i>k</i> - <i>b</i>	k_y	k _y	<i>k</i> - <i>b</i>	<i>k</i> - <i>p</i> 1	<i>k</i> - <i>p</i> 2
k _c	<i>k</i> ₁	<i>k</i> ₃	k _c	k	k
<i>k</i> _{-c}	<i>k</i> -1	<i>k</i> ₋₁	<i>k</i> _{-c}	0	0
<i>k</i> _d	k_1	<i>k</i> ₃	<i>k</i> _d	0	0
<i>k</i> _{-d}	<i>k</i> -1	k.1	<i>k</i> _{-d}	k_m	k _m

Note that some effective rate constants are now functions of L. This is appropriate, since we know for example that the receptors should become less phosphorylated as L increases.

i) In the Spiro model, do k_a/k_{-a} and k_b/k_{-b} increase or decrease with L?

ii) In the Barkai model, we would like k_b to decrease and k_{-b} to increase with L. What does this imply about k_{p1} , k_{p2} , k_{-p1} and k_{-p2} ?

(10) *d*. Spiro model. In steady state, after the slow methylation reactions have had time to equilibrate, let $\alpha(L)$ represent the fraction of receptors that are methylated. Consider now the total concentration of phosphorylated and unphosphorylated receptors. Write out explicitly, in terms of $\alpha(L)$, the effective rates of phosphorylation (k_p) and dephosphorylation (k_{-p}) using

$$k_{p} = (1 - \alpha(L))k_{a} + \alpha(L)k_{b},$$
 $k_{-p} = (1 - \alpha(L))k_{-a} + \alpha(L)k_{-b}$

For perfect adaptation to be achieved, the phosphorylated fraction of receptor must be independent of L in steady state. You should have found above that $k_{-p} = k_y$; it is therefore sufficient for perfect adaptation that $k_p = k_p^*$ is a constant.

Set $k_8 = 15 \text{ s}^{-1}$; $K_L = 1 \times 10^6 \text{ M}^{-1}$; and $k_p^* = 15 \text{ s}^{-1}$. Plot k_a and k_b for L = 0, ..., 2 K_L . On the same graph, draw a horizontal line showing the desired k_p^* . Finally, set $k_p = k_p^*$ in the equation above, solve for $\alpha(L)$, and plot this function. This is the magical form of $\alpha(L)$ required for perfect adaptation. The model of Spiro *et al.* is carefully "tuned" in order to achieve this result. We can contrast this situation with the Barkai model in part *f*, which is perfectly adapting but requires no fine tuning.

(10) *e*. Barkai model. Biochemical evidence suggests that the methylation reaction (whose rate constant was written as k in part c) operates at saturation with rate v. Show that under this assumption, the entire model reduces to the following reaction scheme:

$$T_{2}^{tot} \xleftarrow{k_{0}} T_{2p}^{tot}$$

$$v \iint k_{m}, \qquad \uparrow k_{m}$$

$$T_{3}^{tot} \xleftarrow{k_{b}(L)} T_{3p}^{tot}$$

Note that *v* is a constant *rate* (measured in M s⁻¹) while k_m is a rate constant (measured in s⁻¹). What is the value of k_m ?

Write down the equation for $\frac{d(T_3^{tot} + T_{3p}^{tot})}{dt}$ and solve for T_{3p}^{tot} in steady state. Show that this value is independent of L if and only if $k_m' = 0$. This is the essence of the Barkai model: perfect adaptation is easy to achieve, as long as only the *phosphorylated* receptors are demethylated by the CheB protein.

2. Adaptation and frequency response of the chemotaxis network.

With a slight change of notation, the Barkai model of the chemotaxis network (see Problem 1f) can be represented as

Here, *v* represents the rate of creation of *C*, the unphosphorylated receptor; C^* is the phosphorylated or active form of the receptor, the actual signal which induces bacterial tumbling; k_m and k_m' are the rate constants of demethylation reactions; and finally, k_+ and k_- are rate constants that represent the effect of ligand binding on the phosphorylation state of the receptor.

Set
$$\alpha_+ = \frac{\partial k_+}{\partial L} < 0$$
, and $\alpha_- = \frac{\partial k_-}{\partial L} > 0$. This ensures that a sudden increase of ligand

concentration causes a drop in the phosphorylated fraction of the receptor.

- (10) *a.* Write down the equations for dC/dt and dC^*/dt . Solve for the steady state concentrations C_{ss} and C^*_{ss} . Under what conditions will C^*_{ss} be independent of L?
- (10) b. Set $\delta C = C C_{ss}$, $\delta C^* = C^* C^*_{ss}$. Derive the linearized equations representing fluctuations from steady state, driven by fluctuations $\delta L(t)$ of the ligand concentration. You should obtain

$$\frac{d}{dt}\begin{bmatrix}\delta C\\\delta C^*\end{bmatrix} = \begin{bmatrix}-(k_+ + k_m') & +k_-\\ +k_+ & -(k_- + k_m)\end{bmatrix}\begin{bmatrix}\delta C\\\delta C^*\end{bmatrix} + (\alpha_- C_{ss}^* - \alpha_+ C_{ss})\delta L\begin{bmatrix}1\\-1\end{bmatrix}.$$

(10) c. Assume for now that $\delta L = 0$, $k_m' = 0$, and $k_m = 0$. Calculate the eigenvectors and eigenvalues of the above matrix. You will find that one of the eigenvalues is zero. Recalculate this eigenvalue to first order in k_m .

On a graph of δC vs. δC^* , plot the eigenvectors and note the slow and fast eigenvalues. Sketch a few typical timecourses for various initial values of $\{\delta C, \delta C^*\}$. This initial perturbation might arise if the system had first reached steady state for one value of L, but that value was abruptly changed. Sketch out such an event, showing a step increase in L at time t = 0, and the subsequent evolution of C, C^* , and C_T as functions of time.

(10) d. Now assume that δL , δC , $\delta C^* \sim e^{i\omega t}$. This corresponds to Fourier transforming the equation above.

Calculate the *transfer function* $T(\omega) = \left| \frac{\delta C^*(\omega)}{\delta L(\omega)} \right|.$

Claiming that perfect adaptation holds corresponds to claiming that $T(\omega)$ has no dc component ($T(\omega = 0) = 0$). Show that this is true only if $k_m' = 0$. Assume from now on that $k_m' = 0$.

- (i) What is the behavior of $T(\omega)$ as $\omega \to 0$?
- (ii) What is the behavior of $T(\omega)$ as $\omega \to \infty$?
- (iii) Calculate the value ω^* at which $T(\omega)$ is maximized.

(iv) Make a sketch of $T(\omega)$, indicating all the important regimes.

(10) *e*. From this sketch, it should be clear that the chemotaxis network serves as a bandpass filter: variations of L slower than the demethylation rate k_m are suppressed by the adaptation property of the network; fast fluctuations of L are suppressed because C^* cannot respond any faster than the phosphorylation rate.

(i) Suppose $f_{out}(t) = df_{in}(t)/dt$. Calculate $T_{diff}(\omega) = |f_{out}(\omega)/f_{in}(\omega)|$. This is the transfer function of a differentiator. For what values of ω does the chemotaxis network serve as a differentiator?

(ii) The network most efficiently transmits signals at the frequency ω^* calculated in part d(iii). What is the value of ω^* , assuming $k_m \sim 0.01 \text{ s}^{-1}$ and $k_+ \sim 10 \text{ s}^{-1}$?

(iii) It is said that "a cell compares the attractant concentration at any given time to that 4 seconds ago", generating a tumble if it registers a decrease or a run if it registers an increase. That is, only by *differentiating* the input does the cell manage to swim up an attractant gradient. Is the timescale of 4 seconds consistent with your answer from the part (ii)?