
VI Modeling Escherichia coli chemotaxis 

In this lecture we will discuss and contrast two models that model bacterial chemotaxis: 

1.	 P. A. Spiro, J. S. Parkinson, and H. G. Othmer. A model of excitation and adaptation 

in bacterial chemotaxis. PNAS 94, 7263-7268 (1997). 

2.	 N. Barkai and S. Leibler. Robustness in simple biochemical networks. Nature 387, 

913-917 (1997). 

In Spiro’s model the Tar receptor always forms a complex with CheA and CheW. CheW 

functions as an adapter (scaffolding) protein and has no enzymatic function.  The 

complex has two phosphorylation states (due to CheA), three methylation states, and 

ligand bound or unbound state. These 12 different states are summarized in Fig. 2 of 

Spiro’s paper. The ligand (un)binding reactions are the fast reactions (millisecond) 

whereas the methylation reaction are slow (minutes). The phosphorylation reactions span 

the intermediate time scales. Below we will explore Spiro’s model and try to pinpoint 

why this model has to be fine-tuned in order to reproduce perfect adaptation. This is in 

contrast to Barkai’s model (see below) that does not need fine-tuning to obtain perfect 

adaptation. 

First, let us assume that we only have to consider two methylation states (2 and 3 methyl 

groups). Including more methylation states does not fundamentally change the properties 

of the model. We can always assume that we operate at low concentrations of external 

ligand so that only the low methylation states will be relevant. Remember that the 

number of methylated sites increases with increasing ligand concentration. 

With this assumption the 12 different receptor states reduce to 8 states. 

Secondly, the time scale of ligand binding and unbinding is almost three orders of 

magnitude faster than the phosphorylation and methylation times. We can therefore treat 

the ligand (un)binding reactions as equilibria. This reduces the possible receptor states to 

4 (Fig. 7, Matlab code 3). 
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Figure 7. Reduced version of Spiro’s 
keff3(L) model. 

The fraction of receptors that are bound to a ligand fb can be written as (analogous to 

[II.12], n = 1): 

L K fb = b [VI.1]
1+ L K b 

where L is the ligand concentration and Kb is the association constant for ligand binding: 

Kb 
k5 k6 k7 6 - M 1= = = = 10 [VI.2]
k 5 - k 6 - k 7 

The effective rates are weighted averages of the rates given by Spiro: 

11 bkeff1 = (1 k − f ) + f k = 
k8 + L K k 

8 b b 11 1+ L K b 

12 bkeff2 = (1 k − f ) + k f = 
k9 + L K k [VI.3]9 b b 12 1+ L K b 

3 - bkeff3 = (1 k − f ) + f k = 
k 1- + L K k 

1- b b 3  1+ L K b 

The rates on the right hand side are the rates defined in Spiro’s paper. The effective 

methylation rate can not be written down by a single effective rate constant as 

methylation is assumed to obey Michaelis-Menten kinetics. The methylation rates of the 

non-phosphorylated and phosphorylated receptors are, respectively: 
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[2] f vmax1(1− )[2] f v b max3
r = b +

KR + (1− )[2] f KR + [2] f 
v 

b b


max1(1− )[2 f p ] v b max3
 [2 f p ] [VI.4] 
br = +p KR + (1− )[2 f p ] KR + [2 f p ]b b 

where [2] and [2p] are the total concentrations of non-phosphorylated and phosphorylated 

receptors with two methylation sites. The maximum turnover rates are Vmax1=k1cR and 

Vmax3=k3cR, where R is the total amount of CheR. KR is the Michaelis constant for 

receptor-CheR binding (1.7 µM). Note that the phosphotransfer rate is independent of L. 

k = (Y k − Yp ) + (B k − B ) [VI.5]pt y o b o p 

What is needed for perfect adaptation? Can we write a general relation that tells us how 

to fine-tune the rate constants? 

Suppose the methylation rates [VI.4] would obey ordinary first order kinetics, in this case 

we can write simple ratios between the different receptor states: 

[2p ] keff1(L) [3p ] keff2(L) [3] [3p ] keff4(L) [VI.6]= = = = 
[2] kpt 

, 
[3] k 

,
[2] [2p ] keff3(L)pt 

This system is over-determined (4 unknowns, 5 equations) since the total amount of 

receptor is fixed. In other words no steady state solution exists. By assuming Michaelis-

Menten kinetics [VI.4] you can introduce one additional variable that ‘solves’ this issue. 

Let’s go back to the perfect adaptation. Perfect adaptation means that in steady state the 

number of phosphorylated receptors is independent of the ligand concentration: the 

effective phosphorylation rate is independent of ligand concentration. On long time scale 

the network (Fig. 7) will equilibrate having a fraction (1-α) in state [2] and a fraction α in 

state [3]. The net phosphorylation rate will then be: 

kphos = (1− α)k + αkeff2 [VI.7]eff1 

To obtain perfect adaptation α should be: 

α(L) = 
kphos − keff1(L) kphos(1+ L) K − k − L K k B 8 11 B= [VI.8]

keff2(L) − k (L) (k − k8 ) + (k − k11 L )K eff1 9 12 B 
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The main point is that it is very difficult to obtain perfect adaptation in this model. It 

works for a very specific set of constants, but small variations from this set will lead to 

non-perfect adaptation. 

Barkai’s model uses a similar approach but differs in a subtle way by making crucial 

different assumptions. The main difference is that CheB only demethylates 

phosphorylated (‘active’) receptors. As in Spiro’s model, Barkai’s model can reduced to 

four states (Fig. 8). 
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Barkai’s model. 

A second important assumption is that the methylation rates operate at saturation since 

[CheR] is much smaller than the concentration of receptors. This means that methylation 

rate is constant and is independent of [2] and [2p]. The final crucial assumption is that 

demethylation is independent of ligand binding. This leads to the reduce scheme depicted 

in Fig. 9. 
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Figure 9. Even more stripped down 
version of Barkai’s model. 
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Where rin is the saturated methylation rate that is independent of [2] and [2p]. The kinetic 

equations for these reactions are: 

[3]k][3 k r
dt 

d[3] 

[3]k][3 k -][3kr
dt 

]d[3 

eff2pptin 

eff2pptpeff4in 
p 

−+= 

+−= 
[VI.9] 

The total amount of receptor evolves according to: 

][3k-2r
dt 

]d[3 
dt 

d[3] 
dt 

]d[3 
peff4in 

pT =+= [VI.10] 

In steady state this means that the concentration of [3p] is: 

eff4 

in 
p k 

2r][3 = [VI.11] 

independent of the properties of the phosphorylation reaction and external ligand 

concentration. This system will therefore obey perfect adaptation, for any change in 

ligand concentration. 
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Figure 10. Upper panel: perfect adaptation is observed for certain values of 

the net phoshorylation rate if k11>k9. Perfect adaptation is not observed if 

k11<k9 (lower panel). See equation [VI.3] for definition of rate constants. 
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Matlab code 4: Spiro model 
% filename spiro.m 

clear;
close;
To=8e-6;
Yo=20e-6;
Bo=1.7e-6; 

options = odeset('RelTol',1e-9,'AbsTol',[1e-9 1e-9 1e-9 1e-9 1e-9]); 

[t y]=ode23('spirofunc',[0 80],[4e-6 4e-6 0e-6 0.5e-6 10e-6],options); 

Ptot=To-y(:,1)-y(:,2);
Bp=y(:,4);
Yp=y(:,5);
metlevel=1-(y(:,1)+y(:,3))/To;
phoslevel=1-(y(:,1)+y(:,2))/To;
subplot(2,2,1)
plot(t,phoslevel,'bx');
axis([10 80 0 0.1]);
title('Phosphorylation Level');
subplot(2,2,2)
plot(t,metlevel,'rx');
title('Methylation Level');
axis([10 80 0 1]);
subplot(2,2,3)
plot(t,Bp/Bo,'gx');
axis([10 80 0 1]);
title('Bp/Btot');
subplot(2,2,4)
plot(t,Yp/Yo,'yx');
axis([10 80 0 1]);
title('Yp/Ytot'); 

7.81/8.591/9.531 Systems Biology – A. van Oudenaarden – MIT– October 2004 33 



%filename spirofunc.m 

function dydt = f(t,y,flag) 

% constants from Table 3 (Spiro et al.) 

k1c=0.17;
k3c=30*k1c; % 1/s 

k_1=4e5; % 1/(Ms)
k_3=k_1; % 1/(Ms)
k8=15; % 1/s
k9=3*k8; % 1/s
k11=0; % 1/s
%k12=1.1*k8; % 1/s
k12=30;
kb=8e5; % 1/(Ms)
ky=3e7; % 1/(Ms)
k_b=0.35; % 1/s
k_y=5e5; % 1/(Ms)
Kbind=1e6; % 1/M 

Yo=20e-6; % M 
Bo=1.7e-6; % M 
To=8e-6; % M 
Ro=0.3e-6; % M 
Zo=40e-6; % M 

% [T2]+[LT2] = y(1)
% [T3]+[LT3] = y(2)
% [T2p]+[LT2p] = y(3)
% [Bp] = y(4)
% [Yp] = y(5) 

cligand=1e-6;
if t>20 cligand=1e-3; end;
if t>50 cligand=1e-6; end; 

Vmaxunbound=k1c*Ro;
% maximum turnover rate (MM kinetics) for unbound receptors
Vmaxbound=k3c*Ro;
% maximum turnover rate (MM kinetics) for bound receptors
KR=ratiok1bk1a;
% Michaelis constant 
fb=Kbind*cligand/(1+Kbind*cligand);
% fraction receptors bound to ligand
fu=1-fb;
% fraction receptors not bound to ligand 

kpt=ky*(Yo-y(5))+kb*(Bo-y(4)); 

ydot1=(-k8*fu-k11*fb)*y(1)+kpt*y(3)+(k_1*fu+k_3*fb)*y(2)*y(4)-
Vmaxunbound*y(1)*fu/(KR+y(1)*fu)-Vmaxbound*y(1)*fb/(KR+y(1)*fb);
ydot2=(-k9*fu-k12*fb)*y(2)+kpt*(To-y(1)-y(2)-y(3))-
(k_1*fu+k_3*fb)*y(2)*y(4)+Vmaxunbound*y(1)*fu/(KR+y(1)*fu)+Vmaxbound*y(1)*f
b/(KR+y(1)*fb);
ydot3=(k8*fu+k11*fb)*y(1)-kpt*y(3)+(k_1*fu+k_3*fb)*(To-y(1)-y(2)-
y(3))*y(4)-Vmaxunbound*y(3)*fu/(KR+y(3)*fu)+Vmaxbound*y(3)*fb/(KR+y(3)*fb);
ydot4=kb*(To-y(1)-y(2))*(Bo-y(4))-k_b*y(4);
ydot5=ky*(To-y(1)-y(2))*(Yo-y(5))-k_y*y(5)*Zo; 

dydt=[ydot1; ydot2; ydot3; ydot4; ydot5]; 

 % 1/s 

ratiok1bk1a=1.7e-6; % M 
ratiok3ck3a=1.7e-6; % M 
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