Review Lecture 2 Michaelis-Menten kinetics

$$
\begin{aligned}
& \mathrm{E}+\mathrm{S} \stackrel{\mathrm{k}_{-1}}{\mathrm{k}_{1}} \mathrm{ES} \xrightarrow{\mathrm{k}_{2}} \mathrm{E}+\mathrm{P} \\
& \frac{\mathrm{~d}[\mathrm{~S}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{E}][\mathrm{S}]+\mathrm{k}_{-1}[\mathrm{ES}] \\
& \frac{\mathrm{d}[\mathrm{E}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{E}][\mathrm{S}]+\left(\mathrm{k}_{-1}+\mathrm{k}_{2}\right)[\mathrm{ES}] \\
& \frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{E}][\mathrm{S}]-\left(\mathrm{k}_{-1}+\mathrm{k}_{2}\right)[\mathrm{ES}] \\
& \frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{ES}] \equiv \mathrm{v}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{o}}=[\mathrm{E}]+[\mathrm{ES}] \\
& \frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=-\mathrm{k}_{1} \mathrm{E}_{0}[\mathrm{~S}]+\left(\mathrm{k}_{1}[\mathrm{~S}]+\mathrm{k}_{-1}\right)[\mathrm{ES}] \\
& \frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{dt}}=\mathrm{k}_{1} \mathrm{E}_{0}[\mathrm{~S}]-\left(\mathrm{k}_{1}[\mathrm{~S}]+\mathrm{k}_{-1}+\mathrm{k}_{2}\right)[\mathrm{ES}]
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
& {[S]_{\mathrm{t}=0}=\mathrm{S}_{\mathrm{O}}} \\
& {[\mathrm{E}]_{\mathrm{t}=0}=\mathrm{E}_{\mathrm{o}}} \\
& {[\mathrm{ES}]_{\mathrm{t}=0}=0} \\
& {[\mathrm{P}]_{\mathrm{t}=0}=0}
\end{aligned}
$$

$$
V_{0}=\frac{V_{\max } S_{0}}{K_{m}+S_{0}}
$$

Good approximation if S_{\circ} >> $E_{\text {。 }}$
in this case $S_{0} \sim[S]$ at the start of quasi-steady state

Review Lecture 2

Equilibrium binding and cooperativity

$$
S+P_{j-1} \leftrightarrow P_{j}
$$

Adair's Equation:

$$
\begin{aligned}
& r=\frac{K_{1}[S]+2 K_{1} K_{2}[S]^{2}+3 K_{1} K_{2} K_{3}[S]^{3}+\ldots+n K_{1} K_{2} \ldots K_{n}[S]^{n}}{1+K_{1}[S]+K_{1} K_{2}[S]^{2}+\ldots+K_{1} K_{2} \ldots K_{n}[S]^{n}} \\
& K_{j}=\frac{\left[P_{j}\right]}{\left[P_{j-1}\right][S]} \quad \begin{array}{l}
\text { macroscopic association constant } \\
\text { for transitions between state } j-1
\end{array}
\end{aligned}
$$

Note \#1 Detailed balance

$$
\begin{aligned}
& P_{0} \underset{k_{-1}}{\stackrel{k_{+1}}{\rightleftarrows}} P_{1} \underset{k_{-2}}{\stackrel{k_{+2}}{\rightleftarrows}} P_{2} \quad \ldots \quad P_{n-1} \underset{k_{-n}}{\stackrel{k_{+n}}{\rightleftarrows}} P_{n} \\
& 0=\frac{d\left[P_{0}\right]}{d t}=-k_{+1}\left[P_{o}\right][S]+k_{-1}\left[P_{1}\right] \\
& 0=\frac{d\left[P_{1}\right]}{d t}=-k_{+2}\left[P_{1}\right][S]+k_{-2}\left[P_{2}\right]+k_{+1}\left[P_{0}\right][S]-k_{-1}\left[P_{1}\right]= \\
& =-k_{+2}^{\left[P_{1}\right][S]+k_{-2}^{\left[P_{2}\right]}} \\
& \quad \text { etc. } \\
& \longrightarrow K_{j} \equiv \frac{k_{+j}}{k_{-j}}=\frac{\left[P_{j}\right]}{\left[P_{j-1}\right][S]}
\end{aligned}
$$

I Identical and independent binding sites

$\mathrm{K}=\mathrm{k}_{+} / \mathrm{k}_{-} \quad \mathrm{K}_{1}=2 \mathrm{~K} \quad \mathrm{~K}_{2}=\mathrm{K} / 2$
use Adair: $r=\frac{2 K[S]+2 K^{2}[S]^{2}}{1+2 K[S]+K^{2}[S]^{2}}=\frac{2 K[S]}{1+K[S]}$

II Non-identical and independent binding sites

$$
\begin{aligned}
& \mathrm{K}=\mathrm{k}_{+} / \mathrm{k}_{-} \\
& \mathrm{K}^{\star}=\mathrm{k}_{+}{ }^{*} / \mathrm{k}_{-}{ }^{*}
\end{aligned}
$$

Independent binding: $r=\frac{K[S]}{1+K[S]}+\frac{K^{\star}[S]}{1+K^{\star}[S]}$

III Identical and interacting binding sites

$\mathrm{K}=\mathrm{k}_{+} / \mathrm{k}_{-} \quad \mathrm{K}_{1}=2 \mathrm{~K} \quad \mathrm{~K}_{2}=\mathrm{K}^{*} / 2$ $\mathrm{K}^{*}=\mathrm{k}_{+}{ }^{*} / \mathrm{k}_{-}{ }^{*}$
use Adair:

$$
r=\frac{2 K[S]+2 K K^{\star}[S]^{2}}{1+2 K[S]+K K^{\star}[S]^{2}}
$$

Cooperativity

$$
\begin{aligned}
& r=\frac{2 K[S]+2 K K^{\star}[S]^{2}}{1+2 K[S]+K K^{\star}[S]^{2}} \\
& Y=\frac{x(1+\beta x)}{1+2 x+\beta x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \beta=K^{\star} / K \\
& x=K[S]
\end{aligned}
$$

$\beta>1:$ positive cooperativity
$\beta>2:$ sigmoidal curve
$\beta<1:$ negative cooperativity
(always: $\mathrm{d}^{2} \mathrm{Y} / \mathrm{dx}^{2}<0$)

Hill number for 'real' dimer

Introduction phage biology

```
Phage genome:
48512 base pairs ~ 12 kB
'phage.jpg' ~ 10 kB
```

Image removed due to copyright considerations.
See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

Image removed due to copyright considerations.

$$
\begin{aligned}
& \text { A lysogen is immune to } \\
& \text { invasion of another phage. } \\
& \text { Repressor dimers turn off genes } \\
& \text { in the injected phage } \\
& \text { chromosome. High concentration } \\
& \text { of repressor keeps cell in } \\
& \text { lysogenic state. }
\end{aligned}
$$

The lysis-lysogeny decision is a genetic switch

only 'space' for one RNA polymerase (mutual exclusion)
Image by MIT OCW. After Ptashne, Mark. A genetic switch : phage lambda. 3rd ed. Cold Spring Harbor, N.Y. :
Cold Spring Harbor Laboratory Press, 2004.

Single repressor dimer bound - three cases:

I Negative control, dimer binding to OR2 inhibits RNAp binding to right P_{R} promoter.

Positive control, dimer binding to OR2 enhances RNAp binding to left $P_{\text {RM }}$ promoter.

Image removed due to copyright considerations.
See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

II Negative control, dimer binding to OR1 inhibits RNAp binding to right P_{R} promoter.

Negative control, dimer binding to OR1 inhibits RNAp binding to left P_{RM} promoter (too distant).

Image removed due to copyright considerations.
See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

III

```
Negative control, dimer binding to OR3 inhibits
RNAp binding to left P}\mp@subsup{\textrm{P}}{\textrm{RM}}{}\mathrm{ promoter.
Positive control, dimer binding to OR3 allows
RNAp binding to right }\mp@subsup{P}{R}{}\mathrm{ promoter.
```

Image removed due to copyright considerations.
See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

```
Repressor-DNA binding is highly cooperative
intrinsic association constants:
    K
    However K KoR2* >> K KoR2 (positive cooperativity)
```

Image removed due to copyright considerations. See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

Flipping the switch by UV:


```
Repressor-DNA binding is highly cooperative
intrinsic association constants:
    K
    However K KoR2* >> K KoR2 (positive cooperativity)
```

Image removed due to copyright considerations. See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

Cro dimers bind non-cooperatively to OR sites $\mathrm{K}_{\mathrm{OR} 3} \sim 10 \mathrm{~K}_{\mathrm{OR} 2} \sim 10 \mathrm{~K}_{\mathrm{OR} 1}$

$$
\begin{aligned}
& \text { Note for repressor: } \\
& \mathrm{K}_{\mathrm{OR} 1} \sim 10 \mathrm{~K}_{\mathrm{OR} 2} \sim 10 \mathrm{~K}_{\mathrm{OR} 3}
\end{aligned}
$$

Image removed due to copyright considerations.
See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

Image removed due to copyright considerations.
See Ptashne, Mark. A genetic switch: phage lambda.
3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004.

Cooperative effects make sharp switch ('well defined' decision)

Images by MIT OCW.

Note: several layers of cooperativity: dimerization, cooperative repressor binding

How to create a mathematical model that captures the essence of the switch ?

Images removed due to copyright considerations. See Arkin, A., J. Ross, and H. H. McAdams.
"Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells." Genetics 149, no. 4 (Aug, 1998): 1633-48.

