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Our goal for today is to basically analyze this simple model to death. So we're first
going to try to understand the deterministic behavior of this model gene expression,
where we just get transcription of mMRNA, and then translation of protein. And after
we think we understand the mean behavior, the deterministic dynamics, then we will

try to understand just stochastic behavior in this model.

So we're going to try to understand what's the distribution of mRNA in a cell in this
simple situation. What's the distribution of protein? What's going to be the bursting
behavior? Everything you can possibly think of to ask about this model, we will

hopefully have asked by the end of today's class.

This simple model of gene expression, as was indicated in the review, is perhaps a
reasonable description of gene expression in bacteria, when the gene is in some
active state. So there's no repressor, for example, bound. Although maybe even in
the presence of a repressor, if it's binding and unbinding, maybe you still end up
getting some sort of renormalization that looks like this. But this is first order, a

reasonable description of gene expression in bacteria.

And it's the model that was basically used in the Sunney Xie paper that we talked
about on Tuesday. And hopefully this model will allow us to think a little bit more

deeply about the data that they obtained in that paper.

As always, we want to start by understanding the basic aspects of the model. So
what we're going to do, is we're going to go through a series of questions of
increasing difficulty. And in some of them, we are indeed, the answers will end up
being something divided by something. In which case you take advantage of your

cards, and illustrate that by putting something on top, something below.
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But just first in this model, what is the unit of time? So if | say t is equal to 1, or delta
tis equal to 1, what am | referring to? So we're not use the cards. But in particular,
the question is, is delta t equal to 1, is that a cell cycle necessarily? Yes or no,

ready, three, two, one.

Well | guess now maybe I've complicated things by-- well, this was really going to be
relevant for the later ones. All right. Now I've totally confused you. But can
somebody offer why it may or may not be-- how do we think about the unit of time in

this model?

Usually the lifetime of one of the species [INAUDIBLE].

Right. OK so indeed, what we often do in these non-dimensionalized models is we
set something equal to 1. Have we set anything equal to 1 here? No. So in principle,
we've said there's some degradation rate of the mRNA, some degradation rate of
the protein. And in general, those will be given in some units involving seconds or
minutes or hours. So in general, so at this stage, we have not yet-- we have not

actually gotten to this sort of non-dimensionalized version of any model.

So in this case this is going to be something like a seconds, or minutes, or hours,
whatever units we use for those degradation rates. So we have not done anything
where it's the cell generation time, or the protein lifetime, mRNA lifetime, or anything

like that. Here everybody happy with this statement so far?

So we'll go ahead and vote here. So we're going to do some A, B, C, D's. And you
can always combine anything you want. So we'll go ahead and say this is the
synthesis rate of the mRNA. This is the degradation rate for the mRNA, the
synthesis rate for the protein, the degradation rate for the protein. And if you're just
confused, you can just do this. But in general, for any of the questions we're going
to do, you can do some combination of these guys by putting things in numerator

and denominator. Yes?

Calculate the population of the cells that were hidden?

Yes. Question is, if you just look at the cell population, and you find it's growing
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exponentially, the question is what is going to be that rate of exponential growth.

Have | done something wrong already?

[INAUDIBLE]?

OK. But | am going to say that now for this we're going to assume that the protein is
stable. So it's not actually degraded. This is to remind you of what we read about in
chapter one, maybe of Uri's book, maybe chapter two. I'll give you 10 seconds to

think about this.

Do you need more time? All right, Ready, three, two, one. OK. We got a bunch of
C's and a bunch of D's and some E's. All right. So the E's are going to argue with
me, presumably rather than a neighbor. OK. | think that there are enough people
that are disagreeing on this to maybe go ahead, and turn. You should be able to
find somebody that disagrees with you. The distribution was a bit patchy,
unfortunately. Did you guys-- you guys are worried that you're not going to be able

to find somebody. OK. Fine, fine. Yeah?

So if the protein is stable, ah, so the mRNA may not be stable?

The mRNA may not be stable.

Ah, OK. That makes sense.

And in general which one typically has a longer lifetime?

Proteins.

Proteins typically have a longer lifetime. Right. So mRNA are actively degraded,
typically. They're also just kind of less stable intrinsically. But what we're going to
assume for now is that we're working with stable proteins. In which case the growth

rate of the population will just be this effective degradation rate of the protein.

So in this model, even if we say there's no active degradation of the protein, still
there's going to be some effective degradation that's due to dilution. So we can say

effective, if you like. So the rate of exponential growth of the population will be equal
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to this effective degradation rate for the protein, if it's stable.

So you're talking about the population of the protein?

No. The growth rate of the cell population. So this is if we go in there, and you go
into your spectrophotometer. And you measure population-- numbers in function of
time is growing exponentially. It'll grow exponentially with this rate. Because this is

what's causing the dilution.

In some ways if you stop making the protein, and you double the number of cells,
and that means the concentration of the protein in each cell has to go down by a
factor of two. So that's the statement. Are there any questions about why I'm

making this argument? Yes?

What was the relevance of the protein being stable?

All right. So the relevance of the protein being stable, because this is in general, this
delta, this is the effective rate. This is going to be equal to the growth rate of the
population. So you might call it gamma growth plus the actual degradation. | don't
want to use the same, but I'll just say plus the degradation rate. And this is a true

physical degradation, true degradation rate of the protein.

So if it's stable, then we say that this thing is zero. So when we say stable protein, it
means there's no degradation of the protein. So this physical degradation rate is
zero. And then the effective degradation rate of the protein is just equal to the

growth rate of the population.

OK, so no degradation means stable, basically?

Yes, sorry, yeah. Any other questions about what | mean by this?

So now what we want to do is ask a few other quantities about this model. So for

example, what will be the number of mRNA per cell?

And this is always going to be the mean. I'll give you 20 seconds. In this model what

is the mean number of mRNA per cell? All right. Ready? Three, two, one. And we
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have let's say a majority of the group is saying it's A over B, which corresponds to

the synthesis rate of the mRNA divided by the degradation.

Some people are this one? Yes, so this is indeed, synthesis rate divided by the
degradation rate. Now this is saying that what happens later doesn't really matter,
for the mean mRNA number. Because it's just that it's going to be made at some
rate. Its lifetime is given by 1 over delta m. Now this thing, of course, is again as
always, the effective degradation rate. So it's the sum of the sort of physical

degradation rate, plus this dilution due to growth.

But in general, the true degradation, the physical degradation is much faster than
the cell division rate. So this is very close to actually just the physical degradation
rate. But in any case, it's just delta m, regardless. Are there any questions about

why this is the way it is? Yes?

Does it matter whether it's only physical? Because wouldn't it be the same if it were-

It doesn't matter that it's only-- exactly. That's what | was trying to say. So the way
that this is written, it doesn't matter whether the-- this is the answer regardless of
whether the physical degradation rate is much larger than the growth rate or not.

Yeah.

All right. What is this protein molecules per mRNA? How many protein molecules
are made from each mRNA? Protein produced-- Do you need more time?
Remember. This is again, the mean number of proteins produced from a single

mMRNA or each mRNA.

Let's go ahead and vote, so | can see where we are. Ready? Three, two, one. OK.
So we have, I'd say, so at least a majority are saying it's going to be C over B Now.
All right. So this is interesting. So this is saying that really what's happening is that
there's a competition once you make an mRNA that the proteins are going to be

getting fired off at some rate. But eventually it's going to be degraded.

It's a competition between those two rates that determines basically how many
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proteins, how many times do you fire off a protein before you get degraded. Any

questions about that logic?

Can you please just repeat that one more time?

Sure. Right, so what we're assuming is that OK, an mRNA is produced. And that's
already happened. So it doesn't matter what Sm is anymore. So now we have an
mRNA. Eventually this mMRNA will be degraded. But before that happens, we want to

know, basically how many proteins do we expect to be made.

Now if Sp and delta m are the same that means you kind of expect one protein to
be made on average, before it's degraded. Or if Sp we're twice delta m, then you
would get two proteins made before it was degraded. Now this is a mean statement.
We're about to start thinking-- in 10 minutes, we'll think about this distribution. And

so we have to be careful. But in terms of mean behavior, this thing is true.

So is this different than it has been for the number of proteins per mRNA in the cell?

Is this different from the number of proteins in the cell?

Number of proteins per mRNA in the cell. Because then you will have to do the

protein concentration over mRNA concentration.

OK. Right. So this is not the same thing as asking about the ratio of the number of
proteins. And we can calculate that as well. Yeah these are different. This is the
number of protein molecules produced from each mRNA. So this is just talking
about production. Because indeed, the degradation rates are going to be different.

So then we can see what that ends up being.

Any other questions about why this one is what it is? How about the number of
mRNA produced per cell cycle? And for now we're going to ignore factors of log two.

Do you need more time? So another 10 seconds.

Produced but not degraded?

Produced, yes. We're just talking about production. Because we've already



calculated a number of mRNA in the cell. But now we want to know the mean
number produced. For example, this is the same as the mean number of protein
bursts observed in Sunney Xie's paper. But this is just the number of mMRNA

produced per cell cycle.

All right. Let's see where we are. Ready? Three, two, one. All right. So we've got
lots of A's over D's. That's sounds nice. So this is going to be some synthesis rate.
But now the relevant thing is this delta p. Because that's the cell division rate. So it's
barring issues of log two, it's approximately the synthesis rate of the mRNA divided

by delta p. Because this is the growth rate of population.

Cell generation time is log two off of that. Are there any questions about that
statement? All right, so this is the mean number. Now from the paper, we know how
this thing is distributed. We should probably-- we're going to use a bunch of

distributions over the next couple.

So we can-- we like exponential distributions. We like geometric distributions. We
like Poisson. We like Gaussian. And we like gamma. These are various probability
distributions. The question is, how is it that now, not the mean, but how is the

number of mMRNA produced per cell cycle distributed. Ready? Three, two, one.

All right. We've got some-- this side of the rooms a little bit slower, maybe. But that's
OK. So maybe some people are not confident of this statement. OK. So this one
ends up being Poisson. So this is indeed how the number of-- this is number mRNA

per cycle.

Now this is-- so Poisson, in general, that's what you get if there's some probability
per unit time that something's going to happen, and you want to know how many of
them happen in some finite time period. That's basically the definition of a Poisson.
And this is, if you recall, this is what we talked about on Tuesday. The probability
observe n, it's given by this mean number. So if lambda is the mean, then we get

lambda to the n, over n factorial, e to the minus lambda.

If you go ahead and calculate the mean of this, you indeed get lambda. So lambda
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is equal to the mean, which in this case was around, well in the case of Sunney's

paper, does anybody remember what that roughly was? It was around one.

Now what about this other one? So we also have another mRNA problem, which is
that we calculated the mean number of mRNA per cell. If you look at a cell, the
mean number is this. But what's the probability distribution of the number of mMRNA
per cell? So we probably-- I'm trying think it-- you probably don't yet know this

answer.

This ends up also being Poisson. We're going to calculate this in a bit. But this is
very confusing somehow. That both this thing and this thing, are Poisson. But
they're not the same Poisson, in the sense they have different lambdas. Which one
is going to be larger? This one or this one? The bottom one, right? And that's

because delta m is much larger than delta p, typically.

So indeed, if you ask, in Sunney's paper, for example, there was just over one
MRNA produced per cell cycle. But the mean number of mMRNA might have been
1/30th of that. Because the degradation rate was just 1 and 1/2 minutes. What that's
saying is that in a typical situation you would not see an mRNA in a cell in that

condition.

We're going to calculate this in a moment. So don't worry if you don't see why it's a
Poisson. But don't get confused. There are two different distributions that arise from
the mRNA in the cell or in the cell cycle. And they're different Poissons. And | think
that-- | mean I'm sure that in some deep sense there's a reason that they're the

same. But it's somehow not immediately obvious.

So there was another one that we might have wanted to do, which is the mean
number of proteins in each cell. Now this one is a bit harder. And this one is going to
take full advantage of the cards that you have in front of you. So be prepared. I'm
going to give you 30 seconds. Because this one you might-- well you might need a

little bit more time.

AUDIENCE: This is hard.
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Yeah. Although | think that it's useful to see that it can be a bit tricky. Because this
really is the simplest possible model. We're going to talk about some models that
get to be horribly complicated. And so it's useful to just make sure you can nail

down the intuition on this model.

All right. Do you need more time? It's OK if this is escaping you at this moment. Why
don't we go and see where we are? Ready? Three, two, one. All right. So you know
all the naysayers on the cards, now that you've done this, you feel like it's an

amazing system.

So it's AC over DB. So the two, the product of the synthesis rates divided by the
product of degradation rates. So what we have is the synthesis rate for the mRNA
divided by the degradation rate for the mRNA. Synthesis rate for the proteins

divided by the degradation rate for the proteins.

Can somebody give us a verbal explanation for why this might have been, or why

this is? Yes?

It's the same reasoning as the number of mMRNA per cell. But instead of just a basel-
- like a synthesis rate doesn't depend on the concentration. You're just multiplying

the synthesis rate by the number of mRNA.

Yeah, that's great. OK. So what you're saying is that this thing here was indeed, we
calculate that was the mean number of mMRNA in the cell. If you just start with
something, and you have a production and degradation rate. OK. Well that means
that if you had one mRNA, then indeed that's what the concentration would be, is

this Sp divided by delta p.

But now we-- well we multiply that by the number of mMRNA, and then we are set. All
right. Now another question. We have a distribution, or a mean protein-- wait sorry,
mean number. We have the mean number of protein produced from each mRNA, is

something.

And the question is, is this the most likely number of proteins to observe. Is the

distribution here, now this is a mean, but now we want to start thinking about the
9
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probabilistic stochastic elements. Is this the most likely, is it like the number of

proteins observed from an mRNA?

The question is, is this most likely. By which | mean is the probability distribution
peaked here. So we're going to do an A as a yes, and B is a no. Does everybody
understand the question I'm trying to ask? So an mRNA is here. There's going to be
some proteins made from it. This is the mean. What | want to know is, is that we
should somehow expect? In a sense, is the distribution peaked, the probability

distribution peaked around this value?

And C is-- do | want to do a depends? Well you can always argue after. Do you

need more time?

Is this, you're saying, is this the most likely number of proteins?

Yeah. What I'm wondering is the mode there?

Right. But only for this quantity?

Only yeah. So now we're not doing means anymore. We want to know if the
probability distribution of the protein produced from each mRNA is the mode around

this. Ready? Three, two, one. All right. We got a lot of no's, but some yeses.

So this is actually going to be a no. And this was because the probability distribution.
The question is, what is the probability distribution for the number of proteins
produced from each mRNA. It's going to be one of these. Ready? Three, two, one.
All right. So we've got some difference. But I'd say that most of the group is saying
it's going to be A or B. And indeed these are almost the same distributions. What's

the difference between them?

One's discrete--

Right. So this guy's discrete. This guy is continuous. Right. Indeed when we're
taking about the numbers, then we should get-- it's a geometric. But often we're

kind of a little bit loose about these things. So it's not a disaster if you said

10
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exponential. But the key thing is that the distribution looks something like-- so now
I've certainly drawn it as an exponential. This is the probability of n as a function of

n. Of course, the geometric thing it looks--

Sorry. So why should we expect that distribution?

Why should we expect the distribution? So one answer is that because that's what
you read on Tuesday. But let's go ahead and-- yes, but let's go ahead and calculate

it. That's useful.

The way to think about this, in some ways, there's another way to write this
perhaps. Which is that imagine you have an mRNA. Now at some rate it's going to
be degraded. And maybe we'll keep the degradation rate down, just for-- so there's
a degradation rate. But then if you'd like, we could draw it like this. Where this is the

synthesis rate for a protein. And out pops a protein.

And so the idea is that is here we're in some state where, OK, here we have an
mRNA. Here's the state where we don't have an mRNA. Now this is the competition
between those two rates that | was telling you about. There is some degradation
rate for the mRNA. Or there's a synthesis rate where we go around this loop. If we
come around this loop, we come back to the state with an mRNA. There still is an

mRNA intact. Just out pops a protein.

So then what we want to do, is we want to think about what's the number of proteins
that we expect, not just the mean, but the actual distribution. So it's useful in these
situations to define some probability rho, which is the probability you actually, if
you're here, it's the probability that you produce one protein at least. The question

is, which path do you take initially.

Well that's just given by the ratios. So there's the rate that we take this circular path
divided by the sum of these two other rates. And then what we can do is we can
ask, well what is the probability that O proteins are produced, probability that we get

0. Well if we take this path initially, will we have 0 proteins?

No.
11
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No. Right, so this probability is indeed simply equal to the probability that we do this
first, which is 1 minus rho. Now what's the probably that we get 1 protein? Well, only
1?7 That's equal to the probability that we first take this path, and then we take this

path. Well we can multiply those probabilities. Because we first take the circular path

to make a protein. And then we take the degradation path.

Well what's the probability we get 2? Well that's just that we come around here
once, twice, and then degrade. Now if you're not seeing a pattern here, then we're
in trouble. So this says the probability of n will then just be equal to rho to the n, 1

minus rho.

And indeed, it's always useful in order to warm up your probability muscles, to check
to make sure that this is a normalized probability distribution. So sum over all
possible ends indeed goes to 1. And that's just because the sum over a bunch of
rho to the n's is equal to 1 divided by 1 minus rho, which is the term there. And that

goesto 1.

So this is making a pretty strong assumption that they're all independent?

Yep, yep. Yep. This is assuming that if you've gone around once, you return. But

I've come back to the original state.

But do mRNAs like actually get caught in ribosomes--

There are a lot of things that can be true. And | would say that in biology and in life,
what you do is you first write down the simplest possible model. And then you go
and you make measurements. And you ask whether the simplest possible model

can adequately explain the data.

And if the answer is no, then you're allowed to start thinking about other things.

Because everything's is in principle true. In that mRNA, maybe it's this or that. The
question is whether it's significant. And at least from the data from Sunney's group
would say that in that condition, in those cells, that those things are not significant,

in the sense that you still get a geometric distribution.
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Of course it could also be that those other things actually are true and are
significant. But then you end up with some new parameters that describe how things
look as a result of all the complexity. That's also OK in the sense that I'd say that
you can get a quantitative description of the process by describing it as a geometric
with just a single free parameter. And they found that the mean was four, or four or
five. The mean number of proteins produced from each mRNA. But they got this

geometric distribution in that paper. Yes?

And I'll just mention here that the mean of this is rho divided by 1 minus rho. So
what you see is that as rho goes to 1, then this thing is going to diverge. And that
makes sense. because as rho goes to 1, it's saying that you essentially always

synthesize another protein rather than degrading.

And before | move on, | just want to say one more thing, which is that there are
many different definitions of the geometric distribution, depending upon whether the
probability of rho is the probability of terminating, or the probability of going around,
and also depending on whether you're asking what is the-- here we're talking about
the probability distribution for the number of proteins produced. Whereas we could
have talked about the probability distribution for the number of times we go around

this loop before, no, no sorry. That is for the number of proteins produced.

So the other way you could have defined this is the number of times where it's-- the
number of cycles that you had to go before you went here, in the sense that if you
first go here, you can either call that a 0 or a 1. Do you see what I'm saying? And
reasonable people can disagree. But you end up getting distributions that are just a
little bit different. So watch out. If you just memorize something, you might have
memorized the equation for a different definition of this distribution. Does everyone

understand what | tried to say there? Maybe? Yeah?

When there's no degradation is it still a Poisson?

Ah, if there's no degradation then would this be a Poisson? | mean, this would be

infinity, right?
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Right, [INAUDIBLE] protein, this is done independently, like there's an mRNA.
[INAUDIBLE] proteins independently.

OK. So | want to be clear. This is, p of n is, this is the probability distribution for

number of proteins n, produced from a single mRNA.

Now if there's no degradation of the mRNA, then this thing is not even, | think,
defined in that the number of proteins produced from that mRNA just really goes to
infinity. If you wanted to ask about the probability distribution for the number of
proteins produced in some unit, some period of time that would indeed be a Poisson
distribution, assuming that there's no degradation. Do you understand what I'm

trying to say?

So Spis like 07

If Sp, I'm sorry. If Sp were 07?

Yeah. [INAUDIBLE].

OK. And you're saying that what would be Poisson distributed?

The number of proteins.

Yeah, | think that actually-- no | think that-- | think that you're probably right. That as

Sp goes to 0-- I'm a little bit worried that--

No, no, no. Zero-th order, sorry.

Onh.

Not 0. [INAUDIBLE].

OK. Right, so the mRNA distribution we're about to find is indeed going to be a
Poisson at steady state. And so if there's some process by which the protein
distribution is really just mirroring the mRNA distribution, then it will also be Poisson.
Although | think you have to be careful about how you actually implement that.

Because even in the absence of this geometric bursting, different things, | think, can
14



AUDIENCE:

PROFESSOR:

happen.

Because for example, if there were exactly 10 proteins produced from each mRNA,
then that probability distribution is a shift. But then it's no longer actually going to be
Poisson, because the mean and variance are going to scale differently if you do

that.

Let's maybe do the Poisson distribution for the mRNA first. And then we can try to
touch back on this. So this is a plot of kind of geometric distribution with a mean of

3-4-ish. Is everybody happy with where we are now? OK.

Now from this, what we've said so far is it obvious what the distribution of proteins
will be in a cell? We can say obvious, yes. Or not obvious, no. Ready, just verbal,

yes? Ready or no? All right. Ready? Three, two, one.

No.

No. Right. So we've said that the distribution of size of protein bursts from single
mRNA is geometric. But that doesn't mean that that's going to be the distribution of
proteins in the cell. And indeed after, we're going to find that the distribution of
MRNA is going to be Poisson. But even then it's not obvious what the distribution of

proteins is.

All right. So what we want to do now is we want to introduce kind of a simple version
of what's known as the Master Equation. Now you guys are going to do more
reading on this for the lecture on Tuesday. Where we're going to talk about the
Master Equation, as well as the Fokker-Planck approximation. Maybe the Gillespie

algorithm, and so forth.

But | want to start by thinking about the this notion in the simplest possible context.
So what we're going to do is we're going to think about the world. So we want to
know the steady state, or the equilibrium distribution of MRNA numbers in the cell,

given this process. So that's great. We can-- so mRNA distribution, question mark.

Now in this case we don't care about Sp, delta p, because the only things that are
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relevant are going to be these. Now what we're going to do is we're going to think
about the world in which we just defined states corresponding to the different

numbers of these mRNAs.

So there's a state where there's 0. We can't go to the left, less than 0, but we can

go to the state where there's 1, or the state where there's 2, and so forth.

Now the description here is supposed to be the analog of this over there. So this is
trying to understand the situation where the deterministic equations would be
described by m dot is equal to this some synthesis rate, minus a degradation rate

that's proportional to the number, so minus delta m times m.

So what you can see is that the deterministic equations are very simple. We already
calculated the equilibrium. So when this thing is equal to 0, then we get that m
equilibrium is just going to equal to the synthesis rate divided by the degradation

rate.

If we're away from the equilibrium in this deterministic approximation, how long is it
going to take us to kind of approach our equilibrium? Verbal answer, ready? Three,

two, one.

[STUDENTS RESPOND]

Right. So it's going to be 1 over delta m. So this tells us the characteristic timescale
to come back. So if we're-- this is the equilibrium Sm over delta m. Thisis m as a
function of time. If we're below, we come here. If we're above, we come here. And

this time is 1 over delta m. Are the any questions about?

Now this-- so | want to highlight that this is like the world's simplest dynamical
equation, almost the world's simplest. Yet what we're going to find is that once we
go over and we try to understand the full probability distribution of the stochastic
system then it's a little bit more complicated. In particular, we end up with an infinite

set of differential equations.

So in general the Master Equation format, where we're going to write differential
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equations for how these probabilities change over time. Now what we've done is
we've traded a single differential equation for an infinite number of differential
equations. So that's a bummer. But on the other hand, it will allow us to do the full
stochastic treatment. And it's also a nice, to me, the master equation is useful in

kind of two ways.

One is that it's going to be a tool for us to do analytic calculations. But it's also kind
of a principled way of organizing your thoughts so that you can go and do stochastic
simulations, if that's what you want to do. So it's also just kind of like a weigh station

to kind of help you set up your simulation.

So what we're going to do is we're going to ask about the general way that this thing
is going to move between different states. In particular, we are going to have some

general state in here. Mn, which can go forward or back, Mn plus 1.

Now what we want to do is think about how those probabilities are going to change
over time. So we typically have fn. So this is often written as an fn and fn minus 1.
And then this is a g. | want to make sure | get the n's and n minus ones correct

here.

Typically we write gm plus 1, gn. So these are telling us about the rates of being in
this state, with say, n mMRNAs, as compared to going here. We're going here. So
then what we can do is we can write the change in the probability of mn with respect

to time.

Well there are just a few different ways that the probability can change. So we can
leave the state in two different ways. fn, gn. So the way that we lose the probability

is that we have fn plus gn times the probability that we are in mn. That's an n there.

And then there are going to be two ways that we gain probability. We can gain
probably from the mn minus 1. So this is fn minus 1, plus we can get probability
from the upper state. That's a gn plus 1 mn plus 1. So this is just saying that the
change in the probability of being in this state is going to be given by the probability

that we leave the state. Sorry. The probability that we enter the state, minus the
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probability that we're leaving the state, kind of the rates.

Now this is going to be true for all n, except for n equal to zero, we don't have the
terms over on the left. So this is kind of for all n. So this is, in particular this is for n,
basically 0 on up to infinity. So this is a differential equation for the probability for
having an mRNA. But this is, we have to have a different equation for each n, 0, 1,

2,3, 4,5 o0n up.

So this is what | mean by converting single differential equation, which is actually an
exceedingly simple one, for one that is for an infinite set. And each one is even a
little bit more complicated. In general, these f's and n's can be pretty complicated. In

this situation they're not so bad.

But let's make sure. Can somebody say what fn and gn are equal to? Any

volunteers?

[INAUDIBLE]

Right so fn, this is rate that we add a new mRNA. Well that's just synthesis rate for

mRNA. And this guy is what?

Delta.

So this is degradation rate. And we actually do have to multiply still by the number n.
And that's because as we go further out here to the right, then it is true. The rate at
which we come back to the left is increasing. Because there's just more mRNA that

can be degraded.

Now it's worth saying that you can, for example, use this to simulate the probability
distribution if you start from any distribution you like. So for example, you could start
MO equal to 1. And then just simulate how the probability recalibrates and comes
over here. Similarly, you could do it over here. You could start with any probability
distribution you want. And you could use this as a framework to calculate what the

probability distribution will be at any time later.

But you can also use this just as a way of figuring out what the equilibrium
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distribution is going to be. Because at equilibrium, we can just ask, for each one of
these arrows, the probability of moving to the right has to be equal to the probability
of moving to the left, otherwise we wouldn't be at equilibrium. And that's true for

every one of these kinds of pairs of arrows.

And in particular, what we can get, and | want to make sure that-- so but it's not that
fn is equal to gn-- so it's really going to end up being that if you see what fn and gn,

so that fn is going to have to be equal to g of n plus 1 for all n. Yes?

Do you also need to multiply like natural probabilities--

Ah, Yes, yes, indeed. So that sorry, times mn times m of n plus 1. So it's the kind of

probably flux so we have to equalize.

So this is nice because this gives us a ratio of things. In particular, this tells us that
the probability of being in the n plus 1 divided by the probability of being n, and this
is at equilibrium. Is going to be fn divided by gn plus 1. Which is this synthesis rate.

And then down here is going to be this degradation rate times, in this case, n plus 1.

So this is useful. Because for example, if we start at m, we could say that m1 over
mO0-- well maybe we'll even put the m0 over on the right. So then m1, what is that

equal to? That's going to be synthesis rate divided degradation rate, times mO.

But then we also know that m2, well that's going to be again, synthesis rate divided
by degradation rate. And we're going to get a squared. But then now we have to

divide by 1/2 times mO.

Continuing on, m3 we get Sm over delta m cubed, divided by 1 over 3 times 2 times
mO. So in general, we get the probability of being in the nth state, is going to be this

thing. We'll call it lambda for now. Lambda to the n, divided by n factorial, times mO.

Now what's the-- and I'll-- remember lambda here we've defined it to be the ratio

Sm over delta m. Now if we sum over all these probabilities, what should we get?

1.
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1. Right, if we sum over this thing, what does that equal to? It's what?

Eta lambda.

Eta lambda, right? So just remember in this world-- the sum over lambda to the n, n
factorial, from n equal to 0 to infinity, this is indeed the definition of e to the lambda.
So what that means is that the normalization condition is that m0 has to be equal to
e to the minus lambda, which is indeed a Poisson distribution. I'll raise it up a little

bit.

So this is saying, OK, to back up. If we just have constant rate of creation of
something, constant rate of degradation of that thing, on a per item basis, per unit
basis, then you end up getting a Poisson distribution, at equilibrium for the number

of that thing, in this case, the number of mMRNA in the cell.

Questions about why that is? What happened? How we calculate it?

Could you explain why [INAUDIBLE]?

Sure. So this is basically f of n. And this is basically this g of n. But remember here n
is the number of proteins or the number of mMRNA. So then that's in the context of
the master equation, then m and n are there. You get n by the current number of m.

Does that make sense? Yes?

I'm confused how you changed mO to the e to the minus lambda.

OK. Well let's just do it. So mn, this is the probability that we observe n mRNA. And
we know that the sum over mn, so all these probabilities from n equal to 0 to infinity,

has to be equal to 1. Something has to happen.

Well let's do this sum. This is equal to the sum of lambda to the n, over n factorial
mO. But mO, is this a function of n? No. m0 is just, this is just the probability at
equilibrium that you have 0 mRNA. So we can just pull this thing out. This is just

some number, some probability.

Now the statement is that while this thing, this is the definition of e to the lambda. So
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in general, so e to the x we often write is equal to 1, plus x, plus x squared over 2,

plus dot, dot, dot. So this thing is indeed just equal e to the lambda.

So what we know is that this is still 1. So mO0 times e to the lambda, is equal to 1, so

mO is to the minus lambda.

Any other questions about how we got here? What's going on? Yes?

The plot of the solution to the adjoining equation, that would be like the mean value,

that would be the behavior of the mean values?

That Is the expected behavior of the mean value over time. In this case, fn and gn
are both linear functions of the number of the mRNA. Which means that in the
context of the master equation, if you ask about the expectation of mn, this quantity
is indeed equal to-- it has the same behavior as, over time, as the deterministic

equations.

So if f and g are nonlinear, then actually you get a deviation. But in this case, it is
indeed the same. What it means that if you compare the stochastic and the
deterministic trajectories, what you would see is that this thing is going to be a little
bit jagged, or whatnot. And then even at equilibrium it's going to come up and down

a little bit. I'm trying to add a little bit of jaggedness because it's discrete.

But the deterministic equation here is what you would get if you average together an
infinite number of these stochastic trajectories. Because another one might have

come down here. Does that answer?

Is m playing a double role? Like in that deterministic equation, m is the

concentration of mRNA?

| think that I'm-- yeah [ think that | should-- my nomenclature | think was not very
good. I've used two different things. And now that I'm doing this, | think that | should
have-- | should have just called it p of n, or maybe | should've used n here. | think |
was trying to be consistent with some of the previous, but | think it was a mistake.

Yes?
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Are you plotting stochastic?

I'm plotting-- OK, so no, I'm not. So this is if you run an actual stochastic trajectory.
Then at any moment in time, you just have one-- there's some number of mMRNA.
Whereas the sum over the mn's, this is talking about the probability distribution of
the entire thing. So really if you started here, the master equation would give you
some distribution for the n's, some distribution for m's. And so if you looked at these
over time, than the mean of these distributions is indeed equal to the deterministic

behavior. Yes?

Is it possible to recover, like how would we recover the differential equation from the

master equation? Is that possible? Maybe that would help.

Yeah. | think that in the end, there's going to be a one-to-one relationship from, |
guess, this differential equation to the master equation. I'm trying to think of any
weird case or something funny's going to happen. Is something funny going to

happen?

No. But like the easy way is just to write them all in terms of the distribution. And you
can just differentiate the whole sum. And in that sum, we express the [INAUDIBLE]

with your last equation. [INAUDIBLE].

Right. But | think this is the much more mathematical way. | mean because | think
that actually, | mean, from the differential equation, you actually from the terms
here, you can actually construct the master equation. And | think by the same way,
you can go from the master equation, and | think that there's going to be a unique
differential equation that would have gotten you to that master equation. So | think

just from the terms you can do it.

You could also do like moment generating functions to get to how things change.
But I mean | think that it's really from this, for example, | think it tells you that that

was the differential equation. Does that--

| mean it's sort of-- the way that we typically do things these things, is that we have
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a differential equation, and then we construct the master equation. So then we
already knew what the differential equation was. But | think just from the terms in
your master equation, you can say, all right. This was the differential equation that it

started with.

Any other questions about what happened here? So we have, | think, a fair number,
a fair knowledge of what's going on here now. We know that the equilibrium
distribution of MRNA in the cell is going to be Poisson. We also know that the
distribution of the number of MRNA produced per sell cycle is also Poisson. But it's

a different Poisson from the first one.

We know that the number of proteins produced per mRNA is going to be
geometrically distributed. The one thing that we have not yet done is to ask about

the distribution of protein in the cell. So let's say something about that.

I'm not going to do the whole derivation. Because it's harder. But | encourage you
to-- even the continuous version of the derivation is definitely harder than this. But

then the discrete derivation is even worse.

So what we're going to talk about, and the way we'll typically maybe think about this
from the standpoint of this class is the continuous approximation to-- oh, that might
have ended up being useful. Well it's OK. Is the continuous approximation to the

real answer.

And in particular, just the way that the exponential is the continuous approximation
of the geometric distribution, in the same way you can think about the equilibrium
distribution of protein in the cell. In this model is going to be gamma distributed. But
gamma is a continuous distribution. But it's a continuous analog of the negative

binomial.

So let me just make sure I'm-- and Sunney Xie actually has a nice PRL paper where
he derives the gamma distribution. But even earlier actually Paulson had derived

this negative binomial distribution, the discrete version of the solution.

So this is the number of protein per cell. We already know the mean. So this is
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approximately distributed as a gamma. A gamma is a distribution that requires two
parameters to describe. So a Poisson can be described by single parameter.

Gamma is typically described by two.

And b is going to be the burst size, whereas a is the mean number of bursts per cell
cycle, which is the same as the mean number of mMRNA produced, so mean number

of bursts.

So the gamma of this a, b. All right. So the gamma of a is the gamma function. It's
equal to-- now is it a minus 1 factorial? | always get the-- is it a minus 1 or a plus 1

factorial. Anybody remember this? Yeah, a minus 1.

I mean it's like a lot of things. You look at this equation. It doesn't really mean a
whole lot. But | think that a reasonable way to think about this is the gamma is
approximately what you get when you add together a different exponentials with

length scale, given by b.

When you add probability distributions, you have to do a convolution. So in some
ways, the way to think about it, and this kind of makes sense. Because what is
happening is that it takes something of order cell division time for these proteins to

go away. Because they're stable.

Now each-- and so then what you want to know is how many proteins are kind of
produced over the course of a cell cycle. Well that actually you can get at by asking

how many bursts are there going to be. And then how big are the bursts?

So indeed, the mean here is equal to a times b. And the variance is equal to a times
b squared. So for example, if you have a single exponential distribution, with burst
size b, then this is what you get. So this is the probability that you get n proteins.
And this is this function of n. So for a single burst, this is exponentially distributed.

So this is the continuous version.

Now if we add together multiple of these bursts, this is really saying that we sample
from this distribution, say twice. And then we add the resulting value. So this is a

convolution. You guys will have an opportunity to practice this on your problem sets.
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But what happens is that you end up getting something that looks like-- it's going to
go. So it increases linearly. If you added three of them together this increase is
quadratic. And it kind of goes like that. So this thing becomes kind of-- it goes from a

distribution where it's peaked at 0, to something that's peaked at a nonzero value.

Now you can ask, for example, what happens as for a large a, if you have many
bursts, what does this thing look like? Oh, | wish | hadn't erased my probability
distributions. So what are the gamma converged to for large a? A normal

distribution. Right? So that's the central limit theorem.

If you take any well-behaved probability distribution, you add it. You sample from it
many times. Then you end up getting a Gaussian. If you don't remember that very
well, then this is something to read about over the weekend. Just like the Poisson is

also going to go to-- for large lambda, the Poisson also looks like a Gaussian.

Can somebody give an explanation, an intuitive explanation for why that should be?

Why it-- yes?

Because in a Poisson distribution, you can't have anything negative.

OK. So a Poisson distribution can't have anything-- but now | feel like you're arguing

against me. Because a Gaussian has negative values, right?

Right. So when the mean is really small, only have [INAUDIBLE].

OK. Yeah. All right. So what you're saying is that Poisson for small lambda it can't
go negative. OK. No I think that that's true. Yeah, and so somehow the probability
distribution is somehow piling up, as you say. What are some other ways of thinking

about this?

[INAUDIBLE]. Because if you have a low lambda that means it's a Poisson. And then

I'm just imagining stretching out. [INAUDIBLE].

OK. So | think that's fair. Another way we can think about this, is let's say that we

have some process that's occurring randomly over some period of time. And this
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could be say, mRNA production. And here this is just the number that we observe

here, this is going to be a Poisson, with some mean lambda.

Now let's just say that | take another one, same process, same period of time. How
is this guy going to be distributed? So this also Poisson of lambda. Now let's say |
take this probability distribution, and | take this probability distribution. And |

convolve them. I'm going to do the calculation of my head. | did it.

So for those of you who haven't done convolutions-- whatever. Yes, what's the new

distribution going to be? Poisson 2 lambda. And why does that have to be?

That line was sort of-- you put it by n.

Yeah. That's right. This line, | just kind of like I just made it up. | could have just said,
oh. Well it's the same process occurring over here. So we have to have the mean.
It's still is going to be a Poisson process. And the mean has to be the-- well we just
had twice the length. And indeed, for independent probability distributions, means
always add. So this all consistent will all the things we know. So this has to be a
Poisson of 2 lambda. If | add another segment on here, it has to Poisson of 3

lambda.

But what you see is that we see that Poisson of n lambda, which is the sum over
many Poissons. Poissons are well-behaved probability distributions. You add them
together, you're going to have to get a Gaussian. So you can see that the Poisson

has to become Gaussian for large lambda. And indeed it does.

So there's a comment about this in the--

It's a little bit more complicated than this because obviously you always just divide
from lambda [INAUDIBLE]. Like you would have to say that Poisson lambda is just

like a combination of S--

OK. You're saying that if | do this calculation backwards, I'm going to get into

trouble. Because if | try to break them--

So if you require lambda to be-- you have to have like a significant probability of
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getting at least one candidate, right?

So I'd say lambda has to be much, much larger than 1. So once you're at lambda of
100, it looks like a Gaussian. And in Sunney's paper, he had a comment about this.

Does anybody remember what it was?

Was mRNA production really well described as-- they mention that actually there is

some violation of this model in the data.

Does it go into eukaryotes?

Oh, as soon as you go into eukaryotes, this is why | stay away from them. But even

in their data, in E. coli, they actually observed a deviation.

So what they found is that there was a cell cycle dependence to this bursting rate,
i.e. the mRNA production over the course of the cell cycle. And presumably their
conclusion of this was that you have this guy. And then he turns into, gets longer.

And then eventually he septates, and then you get two cells.

What he found is that these longer cells had actually a larger rate of mMRNA
synthesis than the smaller cells. And actually this makes sense. Because here you
maybe have just one copy of the genome. Whereas here you might have-- you're
making a second copy. So you might have two copies of that gene. So it may make

sense that this bursting rate should grow.

But does that mean that you should not expect it to be a Poisson distribution for the
number of bursts per cell cycle? No. It actually is still-- it still is described by a
Poisson. Because you can just say, this is the cell cycle. And here this is Poisson of
sum lambda 1. Here is a Poisson of sum lambda 2. So there could be a different
rate over the course of the thing. But you still have just two Poissons. You still get
another Poisson. So adding Poissons, gives you backup Poisson. They don't have

to have the same mean lambda.

| just want to make one comment about what you have to do once you start thinking

about eukaryotes. And the basic-- so you can see the gamma distribution can either
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be peaked at 0, or it can be peaked at nonzero value. So most, for like highly

expressed proteins, you'll see that it looks something like this.

Now for eukaryotes, you also have to consider there's some rate that you go
between an active and inactive promoter. And this actually makes things much more
complicated. So there's a rate going to inactive, a rate going to active. And so now if
you look at, for example, the mRNA number per cell, you'll see that it is no longer a

Poisson.

And | encourage you, if you're curious about such things, to come up and look at
this. The solution for the steady state distribution has been solved analytically. For
example, Arjun Raj, who is the author of the review that you guys just read, derived
this equation here, which | don't know if you can see. But even from a distance, you
can see that this is the solution. And this is just for the mRNA distribution. This is not

even getting to the level of the protein.

And it involves many gamma functions, as well as a confluent hypergeometric
function of the first kind, which is a disaster. But he went to Courant. He was an
applied mathematician. So this is, | guess, this is what you can do after doing a PhD

in applied mathematics.

The point though is that it ends up being very complicated. And you can get hugely
varying distributions for the mRNA. And indeed this is seen in individual cells. If you
look at mammalian cells, just at the mRNA level, you can have some cells that have
hardly any mRNA, some that have a huge number. The protein distributions actually
end up being more regular than the mRNA distributions. Because of this difference

in lifetime.

So the mRNA numbers may fluctuate wildly. But the protein numbers will fluctuate
less, because they last longer. So then you do some averaging over this crazy

mRNA business.

Now in the last-- yeah, go ahead.

In terms of timescale, like all this is switching to the active and inactive promoter,
28



PROFESSOR:

like to the other--

Ah, yes. That's a good question. | think that people argue very much about this.
This is kind of minutes. This can be hours. And this is maybe in between those
timescales would be typical. And when | say hours, especially like in mammalian
cells, they might only divide once a day or so. So then this gets to be many hours.

And then I'd say minutes is kind of the--

So there were many biological examples that were discussed in that review. And I'm
not going to talk about all them. But | think that it's a nice review. Because it goes
over some of the papers that you've read, or that we've talked about over the
course of the semester. It also illustrates some different biological context in which

noise may play a role.

But | want to mention one study that was done by actually again, Arjun together with
Hedia Maamar, in collaboration with Dave Dubnau, where they were studying this
process of competence. So in B. subtilis, during sometimes particularly of starvation,
or other forms of unhappiness, they kind of pick up DNA from outside. So they'll
import DNA. Some of it may just be consumed. But some of it could actually be

incorporated into the genome.

Now what they found is that this competence process is mediated by this protein
comK. And there was a positive feedback loop, where this guy ends up positively
activating itself. And this helps lead to bistability in this network. Only a small fraction
of the cells kind of get into this high feedback state. Only a small fraction of them

activate competence and then uptake DNA.

And what they were able to show in that study was that it was sort of noise-induced.
That they were able to vary both the transcription rate and the translation rate, in a
way so as to reduce the noise. The mean is the same. So if you in the context of
this model, what they did is they varied transcription rate, and they varied translation
rate, each say, by a factor of 2. So they got the same mean, but then different

noise.
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And we're out of time. | would have you vote. But can anybody remember? If you
want to decrease the noise in the number of the proteins, which of these do you
want to go up, and which do you want to go down? And which one is going up?

Which one's going up let's say?

Sm.

Sm. Right, so if you want to reduce the noise, but keep the mean constant, you
increase the rate of transcription, and you decrease the rate of translation. Because
the noise is really driven by this protein bursting behavior here. And that's precisely
what they did. They changed those two quantities. They got the same mean, lower

noise, and then they reduced the amount of competence in that sur--
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