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PROFESSOR: Today, what we want to do is talk about something at a much higher scale than

what we've thought about through most of this semester. And that's probably by

design. Over the course of the semester, we started with kind of enzyme kinetics or

molecular binding kind of events, and we slowly built our way up the larger and

larger scales.

Now there's always this question about whether we're claiming that we really

understand how the higher levels of organization result from the lower level

interactions. And I'd say, we definitely don't understand all of it. So you shouldn't

come away with that as the notion.

But at least one thing that I think is fascinating about this area of systems biology is

that much of the framework that we use to understand, let's say, molecular scale

interactions or stochastic gene expression, so these dynamics at the smaller scale,

much of those ideas and such certainly transport up to these higher scales or

translate up to the higher scales, where, in this case, we're using kind of master

equation type formulas to try to understand relative species abundance.

And so I think part of what I like about this topic of neutral theory versus niche

theory and so forth in ecology is that you can just see how very, very similar ideas,

that we applied for studying stochastic gene expression, can also be used to try to

understand why it is that some species are more common than others when you go

and you count them, in this case, on an island in Panama.

Now, the subject is, by its nature, less experimentally focused than much of what

we've done over the course the semester. And this is really a topic the tends to be a

combination of mathematical theory with kind of careful counting of species in some
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different areas and trying to understand what that means.

But it's an area that there have been a number of physicists involved in over the last

10 years. And I think that it's fascinating, because it does get to the heart of what we

are looking for from a theory, what kind of evidence do we use to support a theory

or to refute it.

So I think there are a lot of very basic issues about science that come up when we

start thinking about this question of neutral theory in ecology. And since it's, for

many of us, a totally new area that we don't know very much about, you can come

to it with maybe fresh eyes. And you don't have the same preconceptions that you

would have for many other models that you might be more familiar with in the

context of molecular cell biology.

So the basic question that we're going to try to talk about today is just the question

of why is it that, when you look out at the world, you see that there are some

species that seem to be abundant and some that seem to be rare?

Are there other patterns that are somehow universal? And what kind of sort of lower

scale processes might lead to the patterns that we observe?

And I think that this paper that we read is-- I mean, it's not that it's. Well, can

somebody say what the actual scientific contribution of this paper was? Yes?

AUDIENCE: They did a calculation.

PROFESSOR: They did a calculation. But it's a little bit more specific than that. What is it?

AUDIENCE: They came up with the closed form equation?

PROFESSOR: That's right. Basically, there was a model of this neutral theory in ecology that we're

going to explain or try to understand. You can simulate the model, but then there

are possible issues associated with convergence or something of those. Although

it's hard to believe that that's really such a concern. But you can simulate that

model.
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What they did is they just showed that you could get an analytic-y kind of expression

for it. It's not a super analytic expression, but, at least, it's not a straight up

simulation. You kind of numerically do something, integrate something, as

compared to doing the stochastic simulation.

So it's not that that, in and of itself, is what you feel like-- it's not what we necessarily

care so much about. But I think that it's still just a nice, short description of the

model and the assumptions that go into it. And you get a little bit of a window into

the debate that's going on between these two communities of kind of the neutral

theory guys and the niche theory community.

So there's only one figure in this paper. And it's an example of the kind of data that

we want to try to understand. So there's a particular pattern in terms of the relative

species abundance. And we want to understand what kind of models might lead to

that observed pattern.

But given that there's just one figure in the paper, we have to make sure that we

understand exactly what is being plotted. And what I've found from experience--

and, actually, even the answer to the email question that was sent out, I think, was

incorrect on one of these things. So we'll talk about that some more. So beware.

We'll figure it out.

But I think it's actually surprisingly tricky to understand what this figure is saying. But

first of all, can somebody describe not what the figure is saying but just what the

data is supposed to be?

Where do they get the data? Anything that's useful?

AUDIENCE: They were on an island ecosystem.

PROFESSOR: There's an island. It's called BCI, Barro Colorado Island.

AUDIENCE: [INAUDIBLE].

PROFESSOR: So it's a 50 hectare plot. Does anybody know what a hectare is?

3



AUDIENCE: It's a lot more than a square meter.

PROFESSOR: It's a lot more than a square meter, yes, indeed. Yeah. Is this an English unit of

measure? This is the kind of thing that I have to Google. But it's one hectare is

equal to 10 to the 4 meters squared. That's a good thing to memorize. I

AUDIENCE: Exactly or approximate?

PROFESSOR: I think it's exact. I think I think it's an exact.

AUDIENCE: Then it's a metric unit.

PROFESSOR: Yeah, so apparently it is a metric unit. So the idea is that if you take a 100 meters by

100 meters, this is a hectare. And there's 50 of them. It's about like a half a square

kilometer to give you a sense of what we're talking about.

And what do they do on this plot?

AUDIENCE: They count a certain number as canopy trees. So the trees that are, like, really big.

PROFESSOR: And how do they decide which trees to count? Did they count every tree?

AUDIENCE: No, just the ones that like formed the top layer.

PROFESSOR: I think that the way that they decide-- OK. Does anybody remember how many trees

were counted?

AUDIENCE: [INAUDIBLE].

PROFESSOR: So there are 21,457 trees in this 50 hectare plot. They identify the species for each

one of these 21,000 trees. And they assign them. And they found that there were

225 distinct species.

So this is really quite an amazing data set. Because I can tell you that I would not be

able to do this. This was highly skilled biologists that can distinguish 225. If they can

identify these 225, that means they have to be able to identify other ones as well.

And they did it for 20,000 trees.
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And indeed, Barro Colorado Island is one of the major Smithsonian research

institutes, where they've been tracking. They do this like every five years or so,

where they do a census, where they count all of the trees. And they're also tracking

many other-- it's not just trees. They're doing everything there.

AUDIENCE: Is there only plants?

PROFESSOR: What's that?

AUDIENCE: Is it only plants?

PROFESSOR: No. So actually, I visited BCI, and it seemed like they were studying all sorts of

things. And there were nice looking birds there.

AUDIENCE: No, I mean in this census.

PROFESSOR: In this census, it's only trees. And the way that they decide which of the trees to do,

it's the ones that are more than 10 centimeters DBH. Anybody can guess what DBH

might mean?

It's actually diameter at breast height. So what they do is they walk up to the tree

with a ruler, and then, if it's larger than 10 centimeters, then they count it. You need

to have some threshold at the lower end, otherwise you're in trouble, right? And

there were plenty of trees that satisfied this requirement here.

Then what they do, for all of these trees, it's assigned to some species. The basic

goal of this branch of biology or ecology is to try to understand the pattern, from this

sort of data, where it comes from. Or first describe it, and then once you have a

description of it, then you can try to understand what microscale processes might

lead to the pattern.

And the pattern is what's plotted in figure 1. It's the only figure in the paper. I have

reconstructed a rough version of it, here, for you on the board. But if you want a

more accurate version, you can look at your paper.

Now, we want to make sure that we understand what the figure is saying. So we will
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ask the following question. What is the most common number of individuals for a

species in this data set? The most common/frequent number of individuals for a

species to have in this data set.

Now, it's maybe worth just saying something a little bit more. So you notice that they

were not trying to count the total number of species, altogether. And in general, all

of this field of relative species abundance, to try to understand them, what you do is

typically take one trophic level.

So some of the classic studies were of beetles in the Thames River. The idea is that

it's some set of species that you think are going to be interacting, maybe competing,

with each other, in some way, in the sense that they're maybe eating related things

and being eaten by related things.

And so in this case, these are the trees in Barro Colorado Island. And you can

imagine that this is useful. The fact that it's trees instead of something else means

that you can actually track the individuals over time. And when you go to the island

what you see is that all the trees, they're wrapped by some tag. And presumably,

they have some system to tell you which species that is so that they keep records of

everything.

But the question is, what's the most common number of individuals for species in

the data set? Do you understand what I'm trying to ask? And we're going do

approximate, so we'll say. Or this, can't determine.

We want to know, what is the mode of this distribution of the number of individuals

for each of these species? Do you understand the question? I'm going to give you

20 seconds to look at this.

AUDIENCE: Should we just hold a blank piece of paper?

PROFESSOR: Oh, we don't have our-- ah.

AUDIENCE: [INAUDIBLE]?

PROFESSOR: You know, the TA always lets me down. All right, yeah. So you can do A, B, C, D, E.
6



PROFESSOR:

Are we ready?

AUDIENCE: [INAUDIBLE]?

PROFESSOR: You can just do this if you're not. But given this was the only figure in the paper, and

that this is a basic property of the distribution, I'm sure that you figured that out last

night, anyways, right? Especially since it was one of the questions in the

[INAUDIBLE]. So you presumably already thought about this question, right?

OK. Yes?

AUDIENCE: Yes.

PROFESSOR: Ready, three, two, one. I'd say we got a lot of B's. So it seems like B is the most. So

this, we'll put a question mark here. Can somebody verbally say why their neighbor

said that the mode of the distribution is around 30? Yeah?

AUDIENCE: The tallest bar.

PROFESSOR: The tallest bar there is around 30. That's a very practical definition. So that's

normally what we mean by the mode. There is a slight problem in all of this, which is

that this thing is plotted in a very kind of funny way.

So if you look at the figure, what you'll see is that it's number of individuals. And

down here, it says, log2 scale. Now, when we say the mode, what we're wondering

about is that, if you just take the most typical kind of species of tree that's there, how

many individuals do we think there should be there?

Of course, typical is hard to define. We can talk about mode, median, mean, et

cetera. But the most common number of individuals for a species of the data set

ends up not being 30. It ends up being 1. And we will try to reconstruct this right

now.

Because you have to do a little bit of digging to figure out what is being plotted here.

But it's not the raw data. The problem here is that this is on this log scale, where the

bins here are growing kind of geometrically or exponentially, whatever, as you move
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to the right.

So over here, this thing only contains one real bin. And actually, we're about to find

it's half a bin, which is even weirder. Whereas out here, this is maybe 30 bins. So

the number of species that we're going to put in this bin is everything between

around 20 something up to 50 or so. The number of kind of true bins that end up in

each of these plotted bins is going to grow geometrically as we move to the right.

So this is a very funny transform of the data. And indeed, I think it's always nice to

just, in life, you always plot the raw data first. And then what you can do is then you

can do funny. There's a reason to plot it this way.

Because this is where they get this idea that this might described as described as a

log normal. The idea is, if you take a log of the data, then you get something that

looks like a normal. But you always plot the raw data first.

So let's try to figure out what the raw data looked like. And now what we're going to

do is we're going to have real scalings, honest to goodness numbers. Now the

number of species you get still. So this is asking, how many different species do we

see with one member or with two members or with three, four, et cetera?

And I don't know how far we're actually going to be able to get. But in this one

figure, in our paper, they tell us what the histogram means. So the first histogram

bar represents what they call phi 1 divided by 2. Phi 1 was the number of species

observed with one member, which means that even this first plot bar is not the

number of species observed with a single individual. It's half of that.

You can argue about the consistency of how these things should be, but that's what

this thing's plotted. And it looks like it was nine, here, so this should be 18. So I'm

going to put up here, here's a 20 and here's a 10. Right, so here is an 18.

Now, what do they say? This bin represents phi 1 divided by 2 plus phi 2 divided by

2. So they took the number of species where they saw just a single individual plus

the number of species where they saw two individuals, and they added those and

8



they divided by 2. That's this number.

We're not going to go through this whole process, because it's a little bit tiresome.

But I've already done it for you. So I'm going to plot a few of things to get you there.

And so I calculated it was 19, 13, 9, 6. It becomes ill-determined once you get out

here, in the sense that we don't have enough. It's not uniquely specified going from

that to that as it has to be.

But I calculated it. It's around 5, in here, for a few. And somewhere in here, it's

going to go into 4. And then this might go down to 3, and then deh, deh, deh.

Now, if you look at this and the rapid rapid fall-off, do you think that you're going to

find any species that have more than 20 individuals? We're going to vote. So you

see this falling-off?

So let's say that I've just showed you this, and I haven't yet calculated the rest, do

we think that there's going to be any species with more than 20 individuals? Greater

than 20 individuals, question mark? 1 is yes. 2 is no.

It's going to be yes, no. Ready, three, two, one. So we got some 2s. So I'd say that

most people are saying, no. Look at this fall-off. They're not going to be any species

with more than 20 individuals.

Although we already know that there are many species with more than 20

individuals. So this plot is useful for something. You can see that there are. And we

know exactly the number of species that have more than 20 individuals, roughly. So

those ones are all in these.

So you can see that there are hundreds of species with more than 20 individuals.

And indeed, it looks like there were two or three species that had more than 1,000

individuals or 1,500 or whatever the cutoff there was.

So this distribution starts out rather high but then falls quickly. And out here, it's

going to be very, very sparse. So there's going to be a bunch of numbers in here

where there's not any species in the histogram. And then out there, there's going to
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be one, right?

And indeed, you have to go really far out. Because there's one species out there

that has a couple thousand. And indeed, the mean number of individuals per

species has to be around 100. We know how to calculate a mean. This divided by

this is just short of 100.

So the mean number of individuals in a species is around 100. The mode is one.

And the median? Well, ready? We decided this was the mode. Where is the median

going to be? Is it going to be A, B, C, D? Ready, three, two, one.

Indeed, this tells you pretty clear where the median is. This thing is indeed around

the median. Because you can say, oh, it's about the same numbers to either side.

So the median is around here. And I told you where the mean was, again.

You guys remember? Ready, three, two, one. Mean, uno. Mean. So this is a very,

very funny distribution. I guess I want to highlight that. And I think it's not at all what

you would have expected somehow.

At least, if you had described this measurement process to me, if you told me that

you went to this island and you counted 20,000 trees, I don't know how many

species I would have guessed. But OK, 220, it's reasonable.

Well, I would have guessed it would have looked something like this on a linear

scale, maybe, right? You know, that there would be a bunch of them around 50 to

100 and some would go couple hundred, some of them. So I guess I would have

thought that the mean, mode, median would all be kind of a more similar thing.

But this is just not the way the world is. It's not just on BCI. People, for hundreds of

years, have been studying these distributions. And things that look like this, with

extremely long tails, this is what people see.

Now you can argue about exactly how fast it falls off and whether it's different on a

mainland or an island. But this basic feature, that rare species are common, this

seems to be just that's what you always see. This is the thing that you have to
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remember, rare species are common.

And I think that this is the basic, surprising thing in this whole field. And the ironic

thing is that even after spending all this time reading about theories to describe

these distributions, it's still very possible-- and I would say, based on the statistics,

this year and past years, it's not just possible, but it is the standard outcome-- is that

after reading this paper, you do not realize that the distribution looks like this.

You somehow still think that it looks-- you kind of still think it's like a linear scale,

where the typical species has this, where the mean, median, mode are all about the

same thing. So I guess always plot the raw data in an untransformed way. There

are theoretical reasons why it might be nice to plot it like this. But be very careful

about what you're doing. Because then you're left with a mental image of a

histogram that looks like this. And that's very, very dangerous. Yeah?

AUDIENCE: Why does it matter [INAUDIBLE]? [INAUDIBLE] the aggregate data in bins like that.

And I mean, sure, exactly one species is the mode, but do you really want the--?

PROFESSOR: I understand what you're saying. It's just that there's a qualitative aspect to the data,

which is that most species are very rare. And this is something that I think is

surprising. I think it's deep. And it's something that you do not get realized.

AUDIENCE: Most species have more than 16. I mean, it depends what you mean by rare.

PROFESSOR: Yeah.

AUDIENCE: Look at the way that the distribution is away from trend.

AUDIENCE: That's a good point. But the species density is clustered around the low numbers.

PROFESSOR: Right.

AUDIENCE: But actually most species have more than 30.

PROFESSOR: Maybe the surprising thing is that just if you take-- the mean is 100. And so I

would've thought that, if you plot number of species as a function of the number of
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individuals, given those numbers, I would have guessed, OK, here's 100.

I would have guessed-- here's 50, so just to highlight that this is 150. So linear

scale, I would have guessed it would look something like that, maybe larger than

Rudin or something.

AUDIENCE: What would that look like in a log2 scale? It would look like It's like the log of

[INAUDIBLE]? So it goes up really fast and then--

PROFESSOR: So this thing would be kind of like shoom. I mean all the weight would be in. It would

be like all here plus a little bit on each of these.

AUDIENCE: But yeah. I don't think it's actually that different. The only thing that's different is the

tail on the left.

PROFESSOR: And the tail on the right.

AUDIENCE: Yeah, it's a little bit longer.

PROFESSOR: No, it's lot longer, right? Because this thing, all of the weight is between 50 and 150,

which means that all of the counts are basically going to be these two, basically.

Because this thing comes out either way.

So in this case, if you take that histogram put it on this kind of scale, you end up with

two bars up high, nothing outside. So it's a very different distribution.

And it's not to say that this is a ridiculous thing to do. It's just that. But the problem is

that your mental image of what the distribution looks like ends up being incorrect, in

the sense that you have a qualitatively different sense of what's of what's going on.

And if you go up to 10 species, here, and 10 is way down here.

If this is what it looked like, there would be essentially no species with fewer than 10

individuals. But if you come over here and you add it up here. It's like a mean of 6

times 10 is 60 out of 200. A quarter or a third of the species on this plot of land have

fewer than 10 individuals. And 10 is really a very small number.
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Well, rare species are common. I think it's a true description of the observed

distribution here and elsewhere. And it's not something that you appreciate or

realize when you plot it in that way.

AUDIENCE: But you can get this information from that plot.

PROFESSOR: No, I agree. You can get it. You can get it. But it was only 10% of the group got it.

Right, the fact that you can get it-- right, it's possible. But you don't get it. That is a

practical statement. Yeah, I'm not dead set against this distribution. It's just that it

makes everybody think something that's not true.

So if you think that that's OK, then I can't help you. It's OK, but it's just you have to

be careful is my only statement. And I very much want you to take away. Because I

this is an accurate description of the data. Rare species are common.

And one of the readings-- I think it was in this paper, maybe it was a different one

that I was reading. Even Darwin, when talking about this, commented on this fact

that rarity of species is somehow a typical event.

AUDIENCE: And common species are rare.

PROFESSOR: And common species are rare, that's right. This distribution is hugely, hugely

skewed. These are the measurements. It's good to look at them in both of these

ways. Because you can't even plot the data on a linear scale. So that's a good

reason for doing it. But I think it's good to have both of these pictures in mind.

What we want to do is to talk about two classes of models that give something that's

essentially this log normal distribution. So on a log scale it looks normally

distributed, approximately. And those two models are going to be kind of a niche-

based model and a neutral model.

Can somebody, in words, explain what they maybe see as the difference between

this niche and a neutral kind of approach? Yeah?

AUDIENCE: [INAUDIBLE].
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PROFESSOR: Every species is--?

AUDIENCE: [INAUDIBLE].

PROFESSOR: In which one?

AUDIENCE: In niche.

PROFESSOR: In the niche theory, the species are different. So it seems like a ridiculous

statement. Do you believe that species are different? We can vote, yes or no.

Ready, three, two, one. Yeah. Well, somebody's been convinced by the neutral

theory.

It's clear that species are different. And the question is which patterns in the data do

you need to invoke differences in order to explain?

And I think that one, maybe, theme that's come out of this relative species

abundance literature and the debates between the neutral and the niche guys is just

that this distribution is less informative of the micro scale or individual kind of

interactions then you might have thought.

Because multiple models can adequately explain such a pattern. In all areas, we

have to remember that you make an observation, and you write down a model that

explains that observation. So what you do is you write down a model.

And writing down a model, what that means is that you make some set of

assumptions. And then you look to see what happens in that model. And if the

model is consistent with the data, that's good. But it doesn't prove that the

assumptions that went into the model are correct.

And this is a trivial statement. And I've said it before. You have to tell yourself this or

remind yourself of this kind of once a month. Because it's just such an easy thing to

forget about.

Now, the niche models indeed assume that the species are different. And that's

reasonable. Because we think it's true. But then, of course, there are many different
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ways of capturing those differences. And then you have to decide whether the

assumptions there are reasonable or whether they're necessary, essential.

In the context of the niche models, we're going to think about the so-called broken

stick models. So basically, you get log normal distributions when there's some sort

of multiplicative-type random process that's being added together.

You get normal distributions when you have sums of random things going together.

This is the central limit theorem. But when you have multiplicative kind of errors or

random processes coming together, you get log normal distributions.

And I want to highlight that that does not necessarily have to tell you so much about

the biology of it. Because a classic situation where you get log normal distributions

is if you take a stone and you crush it.

You can do this experiment at home. And then you measure the mass distribution of

the resulting fragments. And the distribution of mass is log normal. Just take a

stone, grind it under your boot or hammer it, just kind rub it right in. You'll get you'll

get some distribution of fragments.

For each of the fragments, measure the mass, and, indeed, you end up getting a

log normal distribution. Because there's some sense that what's happening is that

you take a larger mass, you break it up randomly, and then the resulting fragments,

at some rate, each of them you break up randomly. and the small ones are maybe

kind of less likely to get broken up as the big ones, so then the small ones can still

get even smaller.

But then there's going to be, at some rate, some very large ones. So such a

process ends up-- I mean it's not biology. This is just something about the nature of

the breaking up of this physical object. And indeed, the basic idea behind many of

the niche models that give you a log normal distribution is equivalent to crushing a

stone and measuring the resulting distribution.

I'll describe what I mean by that. Typically, the broken stick models, they say there's

some resource axis. This is a resource axis. And this could be, for example, where
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you're getting food from.

Now, we're going to have to divide up this resource access among some number of

different species. And what we're going to assume is that the number of individuals

in the species is proportional to the length of the resource axis that it's able to

capture. And I want to make sure I find my notes.

I want to highlight this. This comes from MacArthur in the 1950s. MacArthur and it's

1957. So we imagine there's this homogeneous resource axis. We're going to break

it up into N segments. And the abundances are proportional to the length.

And the idea is that, if you just break this up randomly, so let's say you just draw N

minus 1 lines randomly, or N minus 1 points randomly here. Now you have N

species with N different abundances.

The question is does that give a log normal? We'll say N minus 1 random points. Do

you understand what I mean. You sample uniformly once, sample uniformly twice.

You do that N minus 1 times, and now you have N and deh deh.

And then we say, OK, the first species has this many individuals. The second has

this one. The third is this one, et cetera. The question is does random points, does

that lead to a log normal?

Yes and no. Let's think about this for 10 seconds. N minus 1 random points, log

normal distribution, ready, three, two, one. So I'd say that we have a majority are

saying no. Can somebody say why that is?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Because it's something else. That's fair. But can you say qualitatively why it is that

this is not going to work?

AUDIENCE: You can't have very long gaps.

PROFESSOR: Right. That is it's going to be very unusual that you get a very long gap. What about

the other end?
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AUDIENCE: Also a very long tail.

PROFESSOR: Now I'm a little bit worried. I think that that's true, right? Well, I'm going to say that

you're not going to get this super long ones. I think that the distribution might still be

peaked at short values. No?

AUDIENCE: No.

PROFESSOR: Random? If we were just traveling along this resource axis, at a rate that's kind of

exponentially distributed, like Poisson rate, we just dropped points, that's something

very similar to this random--

AUDIENCE: It said we're limited in the number--

PROFESSOR: No. Is that not true?

AUDIENCE: Your sample [INAUDIBLE].

PROFESSOR: I'm a little bit worried that I might be-- now, I'm not 100% confident. Depending on

how I look at this, I get different distributions. Yeah?

AUDIENCE: But I think the first thing that he said, where you just say, I'm going to pick N minus 1

points--

PROFESSOR: Yes.

AUDIENCE: --is a different thing than going along the axis and exponentially dropping ones

along.

PROFESSOR: I agree it's different.

AUDIENCE: I don't think that would be the idea simulated, because you would be very likely to

just get this giant thing at the end when you're finished.

AUDIENCE: What you could do, you could go on to draft N plus 2 points.

PROFESSOR: No, I think--
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AUDIENCE: These scales that are your two end points [? are doubled. ?]

PROFESSOR: Because I think that the probability distribution does grow. I think that I'm going to

side with you. So we've decided that there are not going to be as many short sticks,

and there's not going to be as long sticks as compared to a log normal. Do we

agree with that?

At least we agree that it's not going to be a log normal. So you're not going to get

this huge variation of some very long sticks and some very short ones. Now, the

question is how would you change this sort of model in order to generate a log

normal?

And the answer is that what you have to do is you have to what is called some niche

hierarchy or so some hierarchical breaking. Just like what led to the stone giving

you a log normal is that you have to have some successive process of breaking

things. So this is what they call some hierarchy model.

And then they key thing is that it's sequential. You have your resource axis. First,

you have some rule for breaking it up. It could be that you just sample uniformly or

some other probability distribution.

And the way that you might think about this is via-- just everything up on the board

is so nice and useful. I feel bad getting rid of it. This thing is not true, so I don't mind

erasing it.

So let's imagine some bird community in the forest. And we're going to think about

where is it that the birds are getting their grub or their food to eat.

First, well, now the axis is somehow vertical. You could divide them up into the

ground foragers as compared to the tree foragers in terms of where they're getting

their food.

And you say, oh, well, how much of the food is on each side? Oh, well, we'll say

30% is on the ground, 70% is on the tree. This is along the stick. You cut the stick in

some way, or you break the stick in some way.
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But then within the tree foragers, you'd say, well, the resources might be separated.

And this is really like speciation, a species is in the niche, the species are focusing

on different niches. So you'd say, oh, some are going to focus on the trunk, some

will focus on branches.

And again, this part of the stick is now broken or divided among different resource

locations with some amount. But then also, you're going to get speciation in different

directions here, because there's both the surface-- I don't know if you guys have

ever eaten grubs-- but there's the surface grubs, and then there's also the sub-bark

grubs.

And so you kind of do this process multiple times, where you kind of pick different

branches and break them to divide up the niche. And then you end up with a log

normal type distribution.

And this is a similar process to the crushing of the stone, because the idea is that

there's sequential breaks of the stone. So the stone first breaks into maybe simply

two or it could be three. First, there's one breaking. And then one of them is broken

more. So given this process, you end up getting a log normal distribution. Yeah.

AUDIENCE: But you also have a distribution of like how far. Because I guess there are two

questions. Like when you break your stick, you assume, somehow, that you

uniformly break it.

PROFESSOR: Yeah. A lot of work has gone into the question of how it is you should break the

stick. Given that you have this tree foraging stick. On a practical level, what they do

is they ask, well, what probability distribution gives you the best agreement with the

data? Is it uniform? Or is it, oh, it's broken like this?

And in some cases people say, well, it's actually tilted on one side. Well, in the

context of a succession and some other environments, there's an idea that, if a

species first gets somewhere, they can kind of monopolize a larger fraction of the

resources then if it's divided kind of an equally at the beginning.
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And that's going to effect where this probability distribution is going to break each

one. But there's always this question about how constrained are the notions and so

forth. And I'm agnostic on that point.

AUDIENCE: But you also need distribution for how many times it breaks [INAUDIBLE].

PROFESSOR: Yes. It's just that, if you do this process, it's like a central limit theorem type result.

So you have to do it enough times so that you get to some limiting distribution. And

then you could keep on doing it. In the end, we always say that species abundance

is proportional to the size.

So we're going to scale, ultimately, to get the correct number of individuals. It's just

that you have to do it some reasonable number of times so that the randomness

kind of washes out, and you end up approaching that limiting behavior. Does that

make sense?

And indeed I just want to mention a major result in this field. These niche type

models successfully explained or predicted another pattern that had been observed,

which is the so-called species area relationships.

So this is just saying that, here, we looked at 50 hectares, and we asked how many

species where there. 225 species in 50 hectares. Now, the question is, if instead of

looking at 50 hectares, we instead looked at 500, do you think of that the number of

species we observed would have gone up, stayed the same, or gone down? Up,

same, down, ready, three, two, one.

Up. Up. If you look at a larger area, you expect to see more species in a larger

area. And people really do this. They look in some area, going from, say, they take

a meter, and they count all the species. And then they go and here is 100 meters,

and they count all the species.

And they ask, how many species do you see as a function of the area? And what

people have found is that the number of species you observe it is proportional to the

area to some power, where Z is around a 1/4. And of course, the area goes as

some r squared. If you wanted to, you could say it goes as the square root of the
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radius, whatever.

But the number species in some area, it grows, but it grows in a manner that is less

than linear. Does that make sense? It definitely makes sense that's less the linear.

Because linear would be that you sample a bunch of species here, and then you

look at another identical plot, you get some other species. And they were saying

that, oh, that you really don't expect any of those species overlap. That would be a

weird world.

So it very much make sense that this is less than 1. Of course, it didn't have to be

this power law. But one thing that has been discovered, around the world, is that

power laws are very interesting. But once again, many different microscopic

processes can lead to power laws.

The niche models have successfully predicted or explained why it might have this

scaling. But it turns out that neutral models can also predict it. And may just be that

lots of spatially explicit models will give you some power law type scaling that looks

kind of like this.

So once again, it's a question of how convinced you should be about microscopic

processes based on being able to explain some data. And I think the best cure for

this danger, of assuming that the microscopic assumptions are correct, because the

model is able to explain something, is that, if you find some other very different set

of microscopic assumptions that also explain the patterns, then it becomes clear

that you have to take everything with a grain of salt.

And that's I think part of what's been very valuable about the neutral theory

contribution to this field.

AUDIENCE: Does this just come from-- you assume that all the individuals are uniformly

distributed and then [INAUDIBLE]?

PROFESSOR: There are multiple derivations of this, so it's a little bit confusing. The neutral

models, that I have seen, that lead to these patterns, they basically have the

21



individuals randomly, either with sex or without sex, kind of diffusing around, and

then they divide, deh-deh. And then you can explicitly just do the different spaces

and see that you get a scaling.

It seems to be a surprisingly emergent feature of many of these models. And once

again, it may be something that tells us less about biology than it does about math

or something.

Any other questions about this, the base notion of this niche hierarchy type models?

So I want to spend some time talking about this neutral theory in ecology. The math,

in particular the derivation of this particular closed form solution, is not really so

interesting or relevant. But I think it's very important to understand what the

assumptions are in the model and maybe also something about the circumstances

in which we think that it should apply.

So the basic idea is that we have, what we hope, is some metacommunity that is

large. And then we have an island. So this has to do with this theory of island

biogeography. We have an island over here.

And in the context of the nomenclature of this paper, they are some community

size, size j here. This tells us about the number of individuals. And they're

distributed across some number of species.

Now, the neutral theory, the key thing is that we assume that all individuals are

identical. And once again, it's not that the neutral theorists believe that this is true.

It's that they think that it may be sufficient to explain the patterns that are observed.

And when we say that all individuals are identical, what we mean is that the

demographic parameters are the same, birth, death rates. And it's even a stronger

assumption, in some ways, than that. It's assuming that the individuals are the

same, the species are the same, and that there are no interactions within the

species as well.

So there's no Alley effect, or no specific competition. So the birth, death rates are

going to be independent of everything, which is an amazingly parsimonious model.
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And it's kind of amazing you can get anything out of it.

And then we have a migration rate m. It's either a rate or a probability, depending

on how you think about it. Rate or probability m. And can somebody remind us how

we handle that?

AUDIENCE: Both just in a community?

PROFESSOR: Yeah.

AUDIENCE: At some probability that is proportional to the distribution of the species in the

metacommunity?

PROFESSOR: Yeah, that's right.

AUDIENCE: --transfer an individual from the metacommunity to the island.

PROFESSOR: Perfect.

AUDIENCE: We do stick to the island to make sure that number of individuals.

PROFESSOR: Right. So what we're going to do is we're basically going to pick a random individual,

here, each cycle. This is kind of like a Moran process. We're going to pick an

individual here. And we're going to kill him.

And then what we're going to do is, with probability m, replace that individual with

one member of the metacommunity at random. So the rate coming from here will be

proportional to the species abundance in the metacommunity. And with a probability

of 1 minus m, what we're going to do is we're going to replace that individual with

another individual in the island.

Now, the math kind of gets hairy and complicated. But the basic notion is really quite

simple. You have a metacommunity distribution, which is going to end up being the

so-called Fisher log series in this model. This describes the species abundance on

the metacommunity.

But then on the island, we're just going to assume that there's birth, death that
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occurs over here at some rate. But we don't even have to hardly think about that.

From the standpoint of, say, a simulation or model, we just run multiple cycles of

this, where we have j individuals.

And we always have j individuals, because it's like the Moran process. At every time

point, we kill one individual, and we replace it, with somebody either from the same

community or from the island.

And you can imagine that in the limit of m going to zero, what's going to happen on

the island? Yeah, so you'll end up just one species, just because this is just random,

like genetic drift. It's ecological drift where one species will take over. Whereas if m

is large, then somehow it's more of a reflection of the metacommunity.

Are there any questions about what this model is looking like for now?

AUDIENCE: Could we talk about the Fisher log series?

PROFESSOR: Yeah.

AUDIENCE: So we would put it on the same axis as the [INAUDIBLE]?

PROFESSOR: Yes, this is a very, very good question. So we'll do this in just a moment. Because

this is very important. I want to say just a couple things about this model. So when I

read this paper, what I imagined is that it really looked like this.

This was Panama, and that, 30 kilometers off the coast, there was this island, BCI,

Barro Colorado Island. But that's not maybe an accurate description of what the real

system looks like. Does anybody know where BCI is?

AUDIENCE: It's in Panama.

PROFESSOR: Hm?

AUDIENCE: Panama.

PROFESSOR: So it is in Panama. But it's not off the coast of Panama. I guess that was my original.
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AUDIENCE: It's in the canal.

PROFESSOR: Yeah, it's in the canal. So it's an island that was created when they made the

Panama Canal. So this thing was not always an island. It's been an island for 100

years. And it's in the middle of a canal. And they actually have cougars that swim

back and forth from the mainland.

But it does make you wonder whether this is-- it's much more strongly coupled to

the mainland then I imagined when I read this paper at first. I don't know what that

means for all this. But certainly, you expect this to be a more or less appropriate

model depending on this.

Because, of course, if you went and you sampled 50 hectares here, you wouldn't

believe that it should have the same distribution. You'd believe it should be more

like the Fisher log series. And there's some evidence that things are tilted in a way

that you would expect. And we'll talk about that.

It's tricky. And of course, you have to decide in all this stuff, oh, what do you mean

by free parameters? And actually, it seems like people can't count. And we'll talk

about this in a moment, too.

Because, of course, constructing the model, there's some sense of free parameters

that you have there. Because we could have said, oh, it's just going to be the Fisher

log series, or we could have said, oh, it's going to be island. Or we could have said,

oh, there's another island out here. And then that would be another distribution.

And not all of these things introduce more free parameters, necessarily, because

you could say, oh, this is the same migration rate, or you could do something. But

they are going to lead to different distributions, and you have that freedom when

you're trying to explain the data. There are a lot of judgment calls in this business.

But let's talk about Fisher log series, because this is relevant. So the model is very

similar to what we did for the master equation in the context of gene expression and

the number of mRNA. So was the equilibrium or steady state distribution of mRNA in

a cell, was that a Fisher log series? Yes or no, five seconds? Was the mRNA steady
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state probability distribution a Fisher log series? Ready, three, two, one.

No. No. What was it? It was a Poisson. And you guys should review what all these

distributions are, when you get them, and so forth. So what was the Difference why

is it that we have some probability, P0, P1, P2? This could be mRNA or it could be

number of individuals in some species with some birth and death rates.

What was the key difference between the mRNA model, which led to this distribution

becoming Poisson, and the model that we just studied here, where it became a

Fisher log series? And I should maybe write down what the Fisher log series is.

So this is the expected number of species with n individuals on the metacommunity.

Here is the Fisher log species. There was some theta X to the n divided by n. So

what's the key difference? Yeah.

AUDIENCE: I think that the birth and death rates are both proportional [INAUDIBLE].

PROFESSOR: Right, the birth and death rates are both proportional.

AUDIENCE: In the Fisher log series.

PROFESSOR: In the Fisher log series. So what we have is that b0-- and what should we call b0 in

this model?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Well, right now, we're thinking about the metacommunity.

AUDIENCE: Speciation.

PROFESSOR: Speciation. b0 is speciation, which we're going to assume is going to be constant. In

this model, do we have speciation on the island? No. The assumption is that the

island is small enough that the rate of speciation is just negligible. So speciation

plays a role in forming the metacommunity distribution, but it doesn't play a role in

the model.

So this is speciation. But then what we assume is that b1, here, is equal to some
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fundamental rate b times n, but it's b times, in this case, 1. So more broadly, bn is

equal to some birth rate times n. This is saying that the individuals can give birth to

other individuals.

Now, we're not assuming anything about sexual reproduction necessarily or not.

We're just saying that the kind of rates are proportional to the numbers. So if you

have twice as many individuals, the birth rate will be twice as large. This is

reasonable.

This is Pn and this is Pn plus 1. So this is d of n plus 1 is equal to some death rate

times n plus 1. So each individual just has some rate of dying. It's exponentially

distributed. This again makes sense.

What was the key difference between our mRNA model, from before that gave the

Poisson, and this model that gives the Fisher log series?

AUDIENCE: So with the mRNA, it's with a standard like a chemical equation where there's some

fixed external input. But then the degradation is according to the amount that you

have. So death is proportionate [INAUDIBLE].

PROFESSOR: Perfect. In both cases, the death rate is proportional to the number of either mRNA

or individuals. However, in the mRNA model, what we assume is there some just

constant rate of transcription, so a constant rate, per unit time, of making more

mRNA. So just because there's more mRNA doesn't mean that you're going to get

more mRNA.

But here, we assume that the birth rate is proportional to the number. So that's what

leads to the difference. And so this is one of the few other cases that you can simply

solve the master equation and get an equilibrium distribution.

And it's the same thing we do from just always, where we say, at steady state, the

probability fluxes or whatever are equal. So you get that P1 should be equal to P0.

and then we have a b0 divided by d1. And more broadly, we just cycle through. The

probability of being in the nth state, it's going to be some P0. And then basically, it's

going to b0 divided by d1, b1 divided by d2, b2, d3, dot, dot, dot, up to bn minus 1
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dn.

And indeed, if we just plug in what these things are equal to, we end up getting--

there's P0, the fundamental birth over death to the nth power. And then we just are

left with a 1 over n. Because we're going to have a 2 here and a 2 here, and those

cancel. A 2 here and 3 here, and those cancel. And we're just left with the n at the

end, finally.

So this x, over there, is then, in this model, the ratio of the birth and death rates. So

which one is larger? Is it A slash 1? Is it b is greater than d? Or is it b slash 2, that b

is less than d? Think about this for five seconds. Do you think that birth rates should

be larger than death rates or death rates should be larger than birth rates or do

they have to equal? Ready, three, two, one.

So we got a number of-- it's kind of distributed, 1 and 2's. Well, it's maybe not that

deep, not deep enough. Can somebody say why their neighbor thinks it's one or the

other? People are actually turning to their neighbor. A justification for one or the

other.

AUDIENCE: So if this problem where b over d is greater than 1, then this distribution is not

normalized.

PROFESSOR: Right. So if b over d is greater than 1, so if x is greater than 1, then this distribution

blows up. Then it gets more and more likely to have all these larger numbers. But

then if b is less than d, shouldn't everybody be extinct? No.

Can somebody else say why it is that it's OK for b to be less than d? If birth rates

are less than death rates, shouldn't everyone be extinct?

AUDIENCE: Because there's a rate b0.

PROFESSOR: Because there's a rate b0, exactly. So there's a finite rate of speciation. So it's true

that every species will go extinct. But because we have a constant influx of new

species, we end up with this distribution that's this Fisher log series.
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Now, if you plot the Fisher log series, it looks a bit like this. But let's think about it a

little bit. Does the Fisher log series, does it fall off, A, faster or slower than this?

Fisher falls, A, faster-- this is in this direction-- or, B, slower?

AUDIENCE: Faster or slower than what?

PROFESSOR: Than the island distribution. Because you can see that this falls off pretty rapidly.

Ready, maybe? Three, two, one. I saw a fair number of people that don't want to

make a guess.

Indeed, it's going to be faster. Can somebody say why? Yeah.

AUDIENCE: [INAUDIBLE].

PROFESSOR: Is it going to be because of the 1 over n? I mean the 1 over n is certainly relevant.

Without the one over n, then we just have sort of a geometric series. And the log

normal is not just a geometric series either.

AUDIENCE: [INAUDIBLE] Whereas this has a very long tail.

PROFESSOR: That's right. So this falls off. This would be kind of exponentially, and this is faster

than exponentially. And indeed, this make sense based on the model. Because this

community, the reason that it has some very, very abundant species is partly

because it gets migration from the abundant species here.

This falls off pretty quickly. But those frequent species still can play a pretty

important role in the island community, because the migration rate is influenced by

large numbers. And the other thing is, of course, that the rare species are going to

often go extinct.

I mean the distribution on the island is some complicated process of the dynamics

going here, plus sampling from here. But there's a sense that it's biased towards--

it's not just a reflection of the metacommunity, because the migration rate is

sampled towards the abundant species.

So the migration of these species ends up playing a major role in pushing the
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distribution to the right. So you have much more frequent, abundant species on the

island as compared to the mainland.

AUDIENCE: [INAUDIBLE]?

PROFESSOR: Yeah.

AUDIENCE: [INAUDIBLE] measurement of the distribution on the--

PROFESSOR: Well, I'm sure they have. I think the statement that there's a faster fall off on

mainlands than on the islands I think is borne out by the data. But I don't know if

trees on the Panama side of the canal are actually better described by a Fisher log

series as compared to this, though.

AUDIENCE: I guess my question was the abundant species that we see on the island, is it just

the result of diffusive drift?

PROFESSOR: Well, this also has the diffusive drift.

AUDIENCE: But in the sense that what really pushes.

PROFESSOR: Well, I mean I think you need both, the diffusive drift and the migration. But I think

that the fact that the migration is from the mainland, and it's biased towards those

abundant things, I think is necessary or important.

AUDIENCE: I guess just in terms of distinguishing between the niche and the neutral models, as

applied to the mainland, does the niche model predict also a log normal? Because it

seemed like, in the discussion earlier, the neutral also predicted log normal

[INAUDIBLE].

PROFESSOR: That's a good question. In this whole area, I mean it's a little bit empirical. The fact

that the niche model kind of predicts this, or this broken stick thing predicts a log

normal, they didn't say anything about islands there, right?

I guess even Fisher's original log series, he used it to describe-- I think maybe that

was the beetles on the Thames. But his original data set, where the Fisher log
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series was supposed to described it, as it was sampled better and better, it

eventually started looking more and more like a log normal anyways.

I mean it's easy to see the frequent species, because you see them. This tail can

actually be very hard to see, because you have to find the individuals. It's a good

question of to what degree each of the models really predicts one thing on one

place and another.

There's always tweaks of each model that adjust things. So I think it's a bit muddy.

But the one thing that I want to highlight. So there's a lot of debates, then, between

these different models. And each of the models have some fit.

They have red and black. There's one that kind of goes like this. And another one

that kind of goes like that. And they're not labeled, because they look the same. And

you can argue about chi squareds and everything, but I think it's irrelevant. They

both fit the data fine.

And the other thing, just the sampling of kind root n sampling, if you expect to see

10 species, then if you go and you actually do sampling, you expect to have kind of

a root n on each one. I mean the error bars, I think, around this are consistent with

both models.

So I'd say that the exercise of trying to distinguish those models based on fit to such

a data set I think is hopeless from the beginning. And then you can talk about the

number of parameters. And if you read these two papers, they both say that they

have fewer number of free parameters.

And it is hard to believe that there could be a disagreement about this. But then, you

know, it's like, oh, well, what do you call a free parameter?

And then what they say, any given RSA data set contains information about the

local community size j. So they say, given that, it's not a free parameter, because

you put that in. That's the number of individuals. And then outcome is your

distribution, right?

31



And you say, OK, well, all right, that's fine if you don't want to call that a free

parameter. But then when you fit the log normal to this distribution, the overall

amplitude is also to give you the number of individuals in the metacommunity.

So if you don't call j a free parameter in this model, then you can't call the amplitude

a free parameter when you fit the log normal, at least in my opinion. I think that they

both have three.

Because if you fit a log normal to this, you have the overall amplitude. That's the

number of individuals. And then you have the mean and the standard deviation or

whatever. From that standpoint, I think they're the same. Yeah.

AUDIENCE: But I mean how do you fit the log normal when you don't impose? Do they impose

the amplitude? I mean it's still a parameter.

PROFESSOR: No, that's what I was saying. It's a parameter. I mean the normalized log normal,

you integrate, and it goes to 1. But then you have some measured number of

individuals in your sample, and then you have to multiply by that to give you.

AUDIENCE: But is that what they do when they do their fit?

PROFESSOR: Yeah.

AUDIENCE: Or do they keep that amplitude as also a parameter?

PROFESSOR: I think that you can argue whether this is a free parameter or not. But I think that

you can just put it as the number of individuals, and it's not going to affect anything.

You could actually have it be a free. But this gets into this question about what

constitutes a free parameter or not.

And actually, there is some subtlety to this. But I think, at the end of the day, the log

normal is not going to look like this. You have to. You basically put in the number of

individuals that you measured.

AUDIENCE: So when you calculate [INAUDIBLE]?
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PROFESSOR: Huge numbers of pages of has been written about comparing these things. At some

point, it comes down to this philosophical question about what you think constitutes

a null model. And this gets to be much more subtle.

And I think reasonable people can disagree about whether the null model that you

need to reject should be this neutral model or if it should be a niche-based model.

Or maybe it's just that there's some multiplicative type process that's going on and

gives you distributions that look like this, and you need other kinds of information to

try to distinguish those things.

And in particular, I'd say that it's really the dynamic information in which these

models have strikingly different predictions, and then you can reject neutral-type

models. Because that neutral models predict that these species that are abundant

are just transiently abundant, and they should go way.

Whereas the niche-based models would say, oh, they're really fixed. And indeed, in

many cases, the abundant species kind of stick around longer than you would

expect from a neutral model. Of course, the neutral model is not true in the sense

that different individuals are different. But it's important to highlight that even such a

minimal model can give you striking patterns that are similar to what you observe in

nature.

And so I think we're out of time. So with that, I think we'll quit. But it's been a

pleasure having you guys for this semester. And if you have any questions about

any systems biology things in the future, please, email me. I'm happy to meet up.

Good luck on the final.
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