
Problem Set 9	 Systems Biology (7.32/7.81J/8.591J) 

Problem Set 9 (70 points)  

1 Quasispecies Equation (12 points) 
This problem will introduce you to the quasispecies equation and teach you how to set up the 
equation for a few diferent scenarios. The word quasispecies refers to a group of individuals 
that form a single species but have slightly diferent genotypes. The quasispecies equation, frst 
formulated by Manfred Eigen and Peter Schuster, is a mathematical model that describes how the 
frequencies of diferent genotypes change within a population over time. Let's take a look at this 
equation1: 

nn 
ẋi = xj fj Qji − φ(ix)xi 

j=1 

←→ 
Here, xi and fi are the frequency and ftness of genotype i. Q is the mutation matrix. Qji ←→

denotes the fraction of individuals of genotype j that mutate to genotype i. \e note that Q is a ←→
right stochastic matrix (transition matrix), i.e., Q is a square matrix of nonnegative real numbers, 
with each row summing up to 1. φ(ix) = Σifixi is the average ftness of the population. 

a. [6 points] Now that we know what the various terms mean, it's time to perform a sanity 
check on the quasispecies equation. 

←→ 
1. Explain in words what it means when Q is equal to the identity matrix. 

←→ 
2. Set the mutation matrix	 Q equal to the identity matrix and simplify the quasispecies 

equation to obtain an equation for ẋi. 
3. The frequencies of all the genotypes must add up to 1 (Σixi = 1). So what is Σiẋi? 
4. Verify your result in part a3 by summing up the simplifed quasispecies expression you 

found for ẋi in part a2. 

←→
b. [6 points] Let's return to the original quasispecies equation. (Q is an arbitrary right stochas

tic matrix.) φ(ix) ≡ φ(ix(t)) denotes the average ftness of the population at time t. Defne ´ t
ψ(t) = 

0 φ(ix(s))ds and Ni(t) = N0xi(t)e
ψ(t), where xi(t) is the fraction of individuals of 

type i at time t. 

1. Find out the equation for Ṅi(t).  
2. DefneNT (t)= Ni(t). How does ṄT (t) depend on φ(ix)? 
3. Show that we can interpret NT as the total population size and Ni as the number of 

individuals of type i. 

l Chapter 3 of "Evolutionary Dynamics" by Martin Nowak. 
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Note that the ftness of a given individual can depend on the actual population size and on the 
relative frequencies of other individuals. The population size may be important when resources are 
limiting. On the other hand, frequency dependent selection can arise when there is a cooperative 
behavior in the population that can be exploited by cheaters. To incorporate these features into 
the quasispecies equation, the ftness function can be modifed to include the relevant dependencies 
fi = fi(NT , ix). 

2	 Adaptation in a Sharply Peaked Fitness Landscape (10 
points) 

You will use the quasispecies equation to explore adaptation in a sharply peaked ftness landscape. 
In this simple model, you will fnd that there exists a critical mutation rate uc such that if the 
mutation rate µ of the population is larger than µc then the fttest sequence cannot be maintained 
in the population. 

Consider a species with a genome of length L and the mutation rate per nucleotide µ. The 
probability that a sequence replicates itself without any mutations is q = (1 − µ)L . Our sharply 
peaked ftness landscape will be constructed as follows: there is a single ft sequence (the master 
sequence), xM , that has ftness r > 1, and all other sequences have ftness 1. \e will group all the 
other sequences together into a single variable called xO. Assume that at time t = 0 the population 
only consists of ft individuals (xM = 1). The approximate quasispecies equation reads: 

xṀ	 ≈ xM (rq − φ) 
ẋO	 ≈ xM r(1 − q) + xO − φxO 

a.	 Some terms have been neglected to acquire the approximate quasispecies equation. Explain 
what these terms are and why it is reasonable to neglect them. 

b. Use the equations above to show that in order to maintain the fttest sequence, rq should be 
larger than 1. 

c.	 Assume that the ftness advantage of the master sequence is neither too large nor too small, 
so that log(r) ≈ 1. Show that this means that µc ≈ 

L 
1 . 

3	 Repeated Prisoner's Dilemma (12 points) 
The Prisoner's Dilemma is a twoplayer, twostrategy game, with the payof matrix 

Cooperate Defect 
Cooperate � S 
Defect T P 

where T > R > P > S and R > (T + S)/2. 
Let us consider a repeated Prisoner's Dilemma2. Suppose that after each round of game there 

is a probability w that another round will be played between the two players. Players have a 
2 Chapter 5 of "Evolutionary Dynamics" by Martin Nowak. 
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good memory and can remember the actions of their opponents in all previous rounds. \hile 
defection is an evolutionarily stable strategy (ESS) when individuals know they will never meet 
again, the fnite probability w of repeated interaction may make other strategies evolutionarily 
stable. Axelrod and Hamilton3 argued that a strategy called "titfortat" is evolutionarily stable if 
w is large enough. The titfortat (TFT) strategy is defned as follows: 

•	 Cooperate during the frst interaction, 

•	 Do whatever your opponent did at the previous step of the game. 

If two players both play TFT again each other, their payof is 

R + Rw + Rw2 + . . . = 
R

.	 (1)
1 − w 

a.	 [6 points] Let's follow Axelrod's and Hamilton's derivation of TFT being evolutionarily stable 
for a large enough w. In order to prove it, you need to know the that if TFT cannot be 
invaded by either the always defect (ALLD) strategy or the alternation of defection and 
cooperation (DC), it is evolutionarily stable. 

1. Find a condition for which TFT cannot be invaded by ALLD. For this, compare the 
payof of two players playing TFT (given by Equation 1) and the payof of ALLD playing 
against TFT. 

2. Find a condition for which TFT cannot be invaded by DC. (Note: The frst play of DC 
strategy is to defect.) 

\e know that TFT is ESS if and only if it is invasible neither by ALLD nor by DC. Thus if 
both of the above conditions are satisfed by w, TFT is ESS. 

b. [6 points] Boyd and Lorberbaum questioned the evolutionary stability of TFT. They used 
a diferent defnition of evolutionary stability. In particular, they showed that TFT can be 
invaded by a pair of mutants playing diferent strategies. In their discussion, they consid
ered the following two strategies: 1) the titfortwotats strategy (TFTT), which allows two 
consecutive defections before retaliating; and 2) the suspicioustitfortat strategy (STFT), 
which defects on the frst encounter but thereafter plays titfortat. 
Compare how TFT and TFTT behave against STFT. Show that TFT is not evolutionarily 
stable (if two mutants invade it simultaneously, one playing TFTT, the other playing STFT) 
for large w. \hat is the critical wc? 

4 Stochastic Simulations of the Error Threshold (17 points) 
In this problem, you will perform stochastic simulations to demonstrate the error threshold concept 
in fnite populations. Let's consider a population of N individuals, each having a genome of length 
L. Each position of the genome can be in either of the two states: 0 or 1. Every time an individual 
reproduces, at each position a mutation from 0 to 1 or from 1 to 0 can occur with probability µ. 
The ftness of a particular sequence is 

3 R Axelrod and WD Hamilton. The evolution of cooperation. Science 211: 1390-1396 (1981) 
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Ln 
f = L + s0 gl, 

l=1 

where s0 is a constant and gl is the state of the position l in the genome (either 0 or 1). 

a.	 [1 point] For s0 = 0, what is the steady state distribution of the number of mutations in a 
given genome? \hat is the mean? 

b. [2 points] \hat is the condition on N , L and s0 that makes all the mutations nonneutral? 
\hy is it important that mutations are not neutral? 

c. [4 points] COMPUTATION For N = 50, L = 10 and s0 = 1, perform stochastic simulations 
(Moran process) with various mutation rates (0.005, 0.05, 0.2, 0.5 mutations per position 
per generation). �emember that after a benefcial mutation has been acquired, the reverse 
mutation may occur. Plot several trajectories of the mean ftness of the population. Make 
sure that the trajectories approach a steady state. 

d. [2 points] Is the error threshold located in the regime of clonal interference? 

e.	 [3 points] For the mutation rates higher than the error threshold, what is the steady state 
ftness mean? \ith the decrease of the mutation rate, how do you expect the steady state 
mean ftness to change? 
Now, consider another ftness function n	 n 

f = exp(−0.2 gl) + 1.3 exp(− (1 − gl)), 
l	 l 

f. [2 points] \here are the two ftness peaks located? 

g. [3 points]	 COMPUTATION Start the simulations at the highest peak. Use the mutation 
rates of 0.05, 0.075 and 0.1 per position per generation and run the simulation for 10000 
replications. Plot the average amount of the mutations in the population as a function of 
time. Interpret the results. 

5	 Conditioned Response vs. Direct Response: Anticipation 
of Sugars in E. coli (19 points) 

E. coli can anticipate the future availability of maltose based on the appearance of lactose. Now 
consider the two signals S1 (lactose) and S2 (maltose), separated by a time Δt where S2 gives rise 
to a response R2, in this case R2 is some protein necessary for the use of maltose as a nutrient. 
\e have two strains, one only responds directly to S2 to achieve R2 (direct response, D�), the 
other one anticipates R2 by upregulating genes associated with R2 after the appearance of S1 
(conditioned response, C�). \e will identify the conditions when conditioned response is superior 
to direct response. The frst panel of the following fgure shows the response of both systems. The 
solid line corresponds to C� and the dashed line corresponds to the D�. 
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a.	 [2 points] For both types of responses, what is the response function Y (t) (i.e. response level) 
of each system from time t = 0 until the disappearance of S2? Normalize the functions to 
the steady state of the system. 

b. [4 points] Expression of protein necessary to process S2 carries a cost c (a decrease in growth 
rate), and a beneft b (an increase in growth rate) due to the advantage given by responding 
to S2. 

1. Sketch in the panels the cost and beneft functions of each system. Set each to one if 
no benefts or cost exists at certain times. Assume that the cost is proportional to the 
production level and the beneft is proportional to the amount of the protein in a cell. 

2. Calculate the beneft functions b(t) and cost functions c(t) for the systems given that 
maximum beneft (i.e. the maximum growth rate without any costs) is 1 + κ and 
maximum cost (i.e. the minimum growth rate) is 1 − η. 

c.	 [1 point] The ftness of each species can be written as 

F  =  
∞ ˆ
b(t)c(t)dt,  

0 

where b(t) and c(t) are beneft and cost functions. \rite down the ftness of C� and D�. 
Do not evaluate the integrals. 

d. [3 points] \rite down the relative ftness function ΔFCR−DR = FCR − FDR for both coupled 
and uncoupled appearance of signals (i.e. when S1 and S2 appear sequentially vs. when only 
S1 appears). The duration of the signal S1 is TS1 . Evaluate the integrals for ΔFCR−DR. 

e.	 [3 points] Let's defne p as the probability that S2 will occur given S1. Combine the functions 
derived above into a single equation to give the relative ftness ΔFCR−DR in an environment 
where both coupled and uncoupled appearances may occur. 

f. [3 points] COMPUTATION Set κ = 0.17 and η = 0.045. The generation time is set to 1 and 
the duration of the signal S1 (TS1 ) is 0.25. Explore the phase space of Δt and p for parameter 
values that maximize and minimize the relative ftness ΔFCR−DR . 

g. [3 points]	 COMPUTATION Find Δt that gives the maximum overall ftness. Does it make 
sense? 
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