8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

- 10. Instrumentation
- 1. Particle Interaction with Matter

1

Particle Detection Principle

In order to detect a particle, it must **interact** with the material of the detector and **transfer energy** in some identifiable manner

Which particle can we identify?

Electrons, muons, pions, kaons, protons, neutrons, heavy ions, and photons.

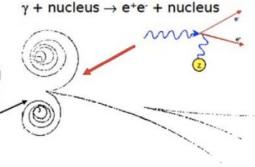
Photon Interaction

Photo effect

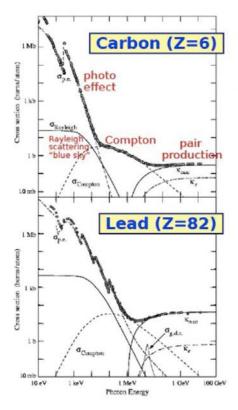
- Used in various photo detectors to create electrons on photo cathodes in vacuum and gas or at semi conductors (surface)
 - · Photo multiplier tubes
 - Photo diodes

t man

 γ + atom \rightarrow atom⁺ + e⁻


 $\sigma_{photo} \propto Z^5$

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.


Compton effect

Pair production

 Initiates electromagnetic shower in calorimeters, unwanted in tracking detectors

Photon Interaction

- Photo effect dominating at low energies < some 100 keV
- Compton scattering regime ~some 100 keV to ~10 MeV
 - Exact energy range depends on Z
- Pair production dominating at high energies > 10 MeV

 $\sigma_{p.e.}$ = Atomic photoelectric effect (electron ejection, photon absorption)

 $\sigma_{\rm Rayleigh} = {\rm \, Rayleigh}$ (coherent) scattering–atom neither ionized nor excited

 $\sigma_{\text{Compton}} = \text{Incoherent scattering (Compton scattering off an electron)}$

 $\kappa_{\text{nuc}} = \text{Pair production, nuclear field}$

 κ_e = Pair production, electron field

 $\sigma_{g.d.r.}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [4]. In these interactions, the target nucleus is broken up.

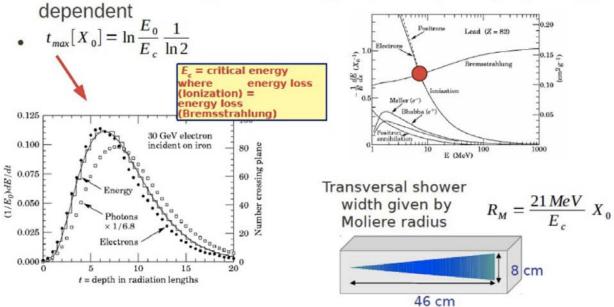
Photon (Electron) Interaction

Main energy loss of high energy photons/electrons in matter

Pair production (γ) and bremsstrahlung (e[±])

Can characterize any material by its radiation length X

- 2 definitions (for electrons and photons)
 - X_0 = length after an electron looses all but 1/e of its energy by brem.
 - $X_0 = 7/9$ of mean free path length for pair production by the photon.


Very convienient quantity

- Rather than using thickness, density, material type ...
 - Often expressed as % of X
- Tracking detectors should been transparent
 - ATLAS and CMS trackers: 30%-230% X
- Calorimeters should have X0 as high as possible (20-30 X₀)

Photon (Electron) Interaction

 — — Starting from the first electron / photon an electromagnetic shower (cascade) develops in thick material

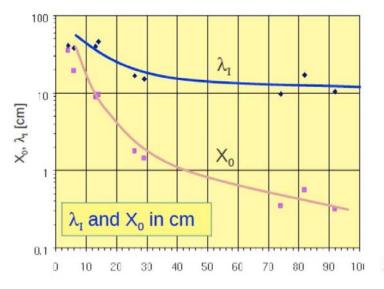
Shower maximum (peak of energy deposition) is slightly energy

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Nuclear Interaction

Similar to radiation length but for strong interaction of hadron with nucleus

Development of hadronic cascade (shower)
hadronic ty ∞ In(E)
Hadronic showers have two main components


- Hadronic
 - Charged hadrons, breaking up of nuclei, neutrons
- Electromagnetic
 - · Decay of neutral pions

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Radiation Length

Gases, e.g. Argon ~100m Light materials, e.g. Aluminum, Silican ~10cm Heavier metals, e.g. Iron, Copper, Lead ~0.5 - 1.5cm

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Charged Particle Interaction

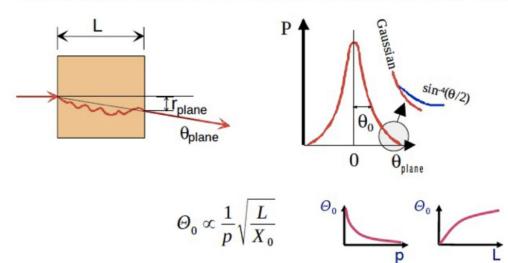
Multiple elastic scattering with atoms

Mostly unwanted, changes initial direction, affects momentum resolution

Ionization

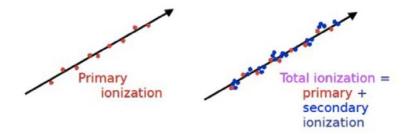
Basic mechanism in tracking detectors

Photon radiation


- Bremsstrahlung
- Cerenkov radiation
- Transition radiation

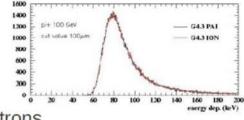
Excitation

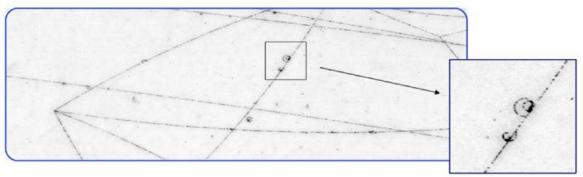
Creation of scintillation light in calorimeters


Multiple Scattering

- After passing a layer of thickness L particle leaves with some displacement r and some deflection angle
- Dominates momentum measurement for low momenta (later)

lonization

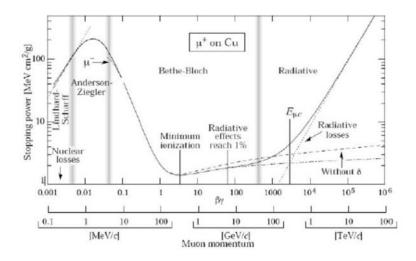

- Primary number of ionizations per unit length is Poissondistributed
 - Typically ~30 primary interactions / cm in gas @ 1 bar
- Primary electrons sometimes get large energies
 - Can lead to secondary ionization
 - Can even create visible secondary track ("delta-electron")
 - Large fluctuations of energy loss by ionization



Typically: total ionization = 3 x primary ionization

lonization

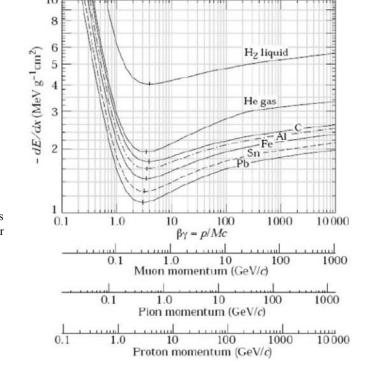
- Energy loss distribution
 - Cluster size fluctuations cause large variations of energy loss from particle to particle
 - Landau distribution
 - Large broad peak
 - Single or few el. cluster
 - Looooong tail
 - Multiple el. cluster, δ electrons



© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

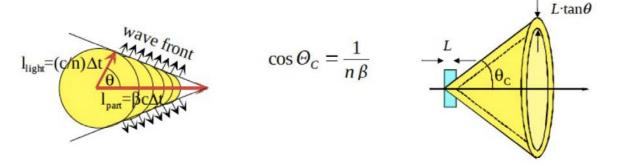
Charge Particle Interaction

- Energy loss function (Bethe-Bloch)
 - Good description for pion from 6 MeV to 6 GeV


$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

© Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Charge Particle Interaction

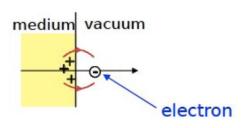

——— Energy loss function (Bethe-Bloch)

© Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Cherenkov Radiation

- Emitted when a charged particle passes through a dielectric medium with speed greater than the speed of light in that medium
- Classical picture: wave front or cone under Cerenkov angle

- Number of emitted photons per unit length and unit wave length $\frac{d^2N}{d^2N} \propto \frac{1}{2} \frac{d^2N}{d^2N} = const$


Transition Radiation

- Predicted by Ginzburg and Franck in 1946

- Emission of photons when a charged particle traverses through the boundary of two media
- Very simple picture
 - Charged particle is polarizing medium
 - Polarized medium is left behind when particle leaves media and enters vacuum
 - Formation of an electrical dipole with radiation

Radiated energy per boundary

- Only very high energetic particles can radiate significant energy.
- In our present energy range only electrons can radiate transition radiation (particle ID!)
- · Need many boundaries to get enough photons

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.