8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

0. Introduction

0.6 Particles

Force Particles

© Mattson Rosenbaum (on PBworks). All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

		Generation		Charge	Feels the force of			
		1^{st}	2 nd	3^{rd}	Units of e	Strong	$\mathbf{E}\mathbf{M}$	Weak
Matter Particles	U-Type Quarks ($\times 3$ colours)	u	c	t	+2/3	Y	Y	Y
	D-Type Quarks ($\times 3$ colours)	d	s	b	-1/3	Y	Y	Y
	Charged Leptons	e	μ	au	-1	Ν	Y	Υ
	Neutral Leptons (Neutrinos)	$ u_e$	$ u_{\mu}$	$ u_{ au}$	0	Ν	Ν	Υ

© Mattson Rosenbaum (on PBworks). All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

$$m_e = 9.11 \times 10^{-31} \text{ kg}, \qquad m_\mu = 1.88 \times 10^{-28} \text{ kg}, \qquad m_\tau = 3.17 \times 10^{-27} \text{ kg}$$

The Higgs Boson

Name	Symbol	Number	Charge
Higgs	Η	1	0

© CERN. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

© Nature Publishing Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Elementary Particle

© CERN. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Timeline of Discoveries

© The Economist Newspaper Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Composite Particles and Hadrons

Mesons: quark-antiquark states; bosons

Baryons: three-quark states; fermions

Courtesy of <u>Arpad Horvath</u> on <u>Wikimedia</u>. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

© CERN. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Proton

Courtesy of <u>Arpad Horvath</u> on <u>Wikimedia</u>. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Nuclei

Bound state of protons and neutrons through the strong force.

Can be described by number of protons, Z, (atomic number) and number of neutrons, N. The sum Z+N is denoted atomic mass A

Courtesy of <u>Silegg</u> on <u>Wikimedia</u>. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.