Massachusetts Institute of Technology Department of Physics

Course:	8.701 – Introduction to Nuclear and Particle Physics
Term:	Fall 2020
Instructor:	Markus Klute
TA :	Tianyu Justin Yang

Discussion Problems

from recitation on September 22nd, 2020

Problem 1: Decay rate

Calculate the lifetime of A, the particle in our toy experiment.

• The lowest-order contribution to $A \to B + C$ is shown in Figure 1. There is no internal line and one vertex. Following the Feynman rules we find a factor -ig and a delta function which we have to drop and replace by an *i*. Thus, we get M = g.

Figure 1: Lowest-order contribution to $A \rightarrow B + C$.

The decay is then $\Gamma = \frac{g^2|p|}{8\pi\hbar m_A^2 c}$ with the magnitude of the outgoing particles $|p| = \frac{c}{2m_A}\sqrt{m_A^4 + m_B^4 + m_C^4 - 2m_A^2m_B^2 - 2m_A^2m_C^2 - 2m_B^2m_C^2}$. The lifetime for A is then $\tau = \frac{1}{\Gamma} = \frac{8\pi\hbar m_A^2 c}{g^2|p|}$

Problem 2: Scattering cross section

Calculate the differential cross section for the process $A + A \rightarrow B + B$

• The scattering process at lowest order is shown in Figure 2.

Figure 2: Lowest-order contribution to $A + A \rightarrow B + B$.

We have two vertices and one internal line with the propagator $\frac{i}{q^2-m_C^2C^2}$, two delta functions $2\pi\delta^4(p_1-p_3-q)$ and $2\pi\delta^4(p_2+q-p_4)$ and have one integration $\frac{1}{(2\pi^4)}d^4q$. This yields $-i(2\pi)^4g^2\int \frac{1}{q^2-m_C^2C^2}\delta^4(p_1-p_3-q)\delta^4(p_2+q-p_4)d^4q$.

Integrating and replacing the remaining delta function result in $M = \frac{g^2}{(p_4-p_2)^2-m_C^2C^2}$. There is a second Feynman diagram (see Fig. 3) of the same order with p_3 and p_4 interchanged.

Looking at the specific example of $m_A = m_B = m$ and $m_C = 0$ we find $M = -\frac{g^2}{p^2 \sin^2 \theta}$ and for the differential cross section $\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{\hbar c g^2}{16\pi E p^2 \sin^2 \theta}\right)^2$.

Figure 3: Lowest-order contribution to $A + A \rightarrow B + B$.

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.