Massachusetts Institute of Technology Department of Physics

Course: 8.701 - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute
TA: Tianyu Justin Yang

Discussion Problems

from recitation on September 22nd, 2020

Problem 1: Decay rate

Calculate the lifetime of A, the particle in our toy experiment.

- The lowest-order contribution to $A \rightarrow B+C$ is shown in Figure 1. There is no internal line and one vertex. Following the Feynman rules we find a factor $-i g$ and a delta function which we have to drop and replace by an i. Thus, we get $M=g$.

Figure 1: Lowest-order contribution to $A \rightarrow B+C$.

The decay is then $\Gamma=\frac{g^{2}|p|}{8 \pi \hbar m_{A}^{2} c}$ with the magnitude of the outgoing particles $|p|=$ $\frac{c}{2 m_{A}} \sqrt{m_{A}^{4}+m_{B}^{4}+m_{C}^{4}-2 m_{A}^{2} m_{B}^{2}-2 m_{A}^{2} m_{C}^{2}-2 m_{B}^{2} m_{C}^{2}}$. The lifetime for A is then $\tau=\frac{1}{\Gamma}=\frac{8 \pi \hbar m_{A}^{2} c}{g^{2}|p|}$

Problem 2: Scattering cross section

Calculate the differential cross section for the process $A+A \rightarrow B+B$

- The scattering process at lowest order is shown in Figure 2.

Figure 2: Lowest-order contribution to $A+A \rightarrow B+B$.
We have two vertices and one internal line with the propagator $\frac{i}{q^{2}-m_{C}^{2} C^{2}}$, two delta functions $2 \pi \delta^{4}\left(p_{1}-p_{3}-q\right)$ and $2 \pi \delta^{4}\left(p_{2}+q-p_{4}\right)$ and have one integration $\frac{1}{\left(2 \pi^{4}\right)} d^{4} q$. This yields $-i(2 \pi)^{4} g^{2} \int \frac{1}{q^{2}-m_{C}^{2} C^{2}} \delta^{4}\left(p_{1}-p_{3}-q\right) \delta^{4}\left(p_{2}+q-p_{4}\right) d^{4} q$.

Integrating and replacing the remaining delta function result in $M=\frac{g^{2}}{\left(p_{4}-p_{2}\right)^{2}-m_{C}^{2} C^{2}}$. There is a second Feynman diagram (see Fig. 3) of the same order with p_{3} and p_{4} interchanged.

Looking at the specific example of $m_{A}=m_{B}=m$ and $m_{C}=0$ we find $M=$ $-\frac{g^{2}}{p^{2} \sin ^{2} \theta}$ and for the differential cross section $\frac{d \sigma}{d \Omega}=\frac{1}{2}\left(\frac{\hbar c g^{2}}{16 \pi E p^{2} \sin ^{2} \theta}\right)^{2}$.

Figure 3: Lowest-order contribution to $A+A \rightarrow B+B$.

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

