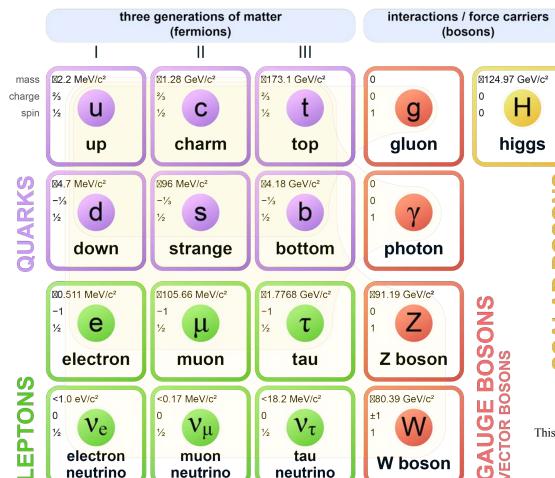
8.701


Introduction to Nuclear and Particle Physics

Markus Klute - MIT

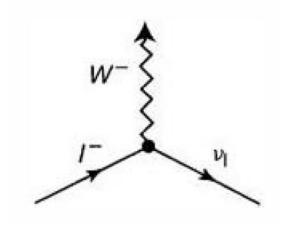
- 6. Weak Interaction
- 6.1 Feynman rules

1

Standard Model of Elementary Particles

This image is in the public domain.

Feynman Rules


Propagator for W and Z bosons

$$\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M^2c^2)}{q^2 - M^2c^2}$$

Weak vertex factor

$$\frac{-ig_w}{2\sqrt{2}}\gamma^{\mu}(1-\gamma^5)$$

(W[±] vertex factor)

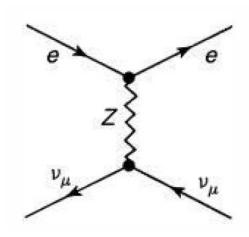
$$\frac{-ig_z}{2}\gamma^{\mu}(c_V^f-c_A^f\gamma^5)$$

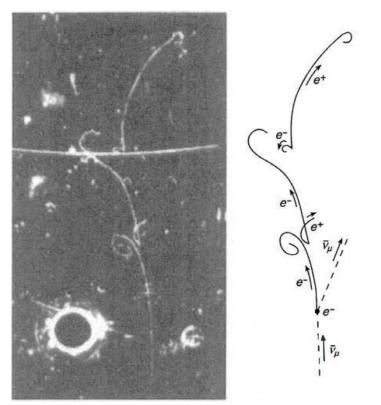
(Z⁰ vertex factor)

Feynman Rules

Neutral vector and axial vector couplings

$$\frac{-ig_z}{2}\gamma^{\mu}(c_V^f - c_A^f \gamma^5) \qquad (Z^0 \text{ vertex factor})$$


f	cv	CA		
v_e, v_{μ}, v_{τ} $e^-, \mu^-, \tau^ u, c, t$	$\frac{\frac{1}{2}}{-\frac{1}{2}+2\sin^2\theta_w}$ $\frac{1}{2}-\frac{4}{3}\sin^2\theta_w$	$-\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$	$\theta_{\rm w}=28.75^{\circ}$	$\{\sin^2\theta_w=0.2314\}$
d, s, b	$-\frac{1}{2}+\frac{2}{3}\sin^2\theta_{\rm w}$	$-\frac{1}{2}$	© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more	


information, see https://ocw.mit.edu/fairuse.

4

Discovery of the Neutral Current

Gargamelle bubble chamber at CERN in 1973

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.