Massachusetts Institute of Technology

Department of Physics

Course: 8.701 – Introduction to Nuclear and Particle Physics

Term: Fall 2020

Instructor: Markus Klute

TA: Tianyu Justin Yang

Discussion Problems

from recitation on October 20th, 2020

Problem 1: Tau Decay

The liftetime of the muon can be calculated to

$$\tau = \frac{1}{\Gamma} = \left(\frac{M_{\rm W}}{m_{\mu} g_{\scriptscriptstyle \rm W}}\right)^4 \frac{12 \hbar (8\pi)^3}{m_{\mu} c^2}$$

Use this equation to calculate the lifetime of the tau and compare with the experimental values. Discuss the result.

Problem 2: Kaon Decay

Calculate the ratio of the decay rates $K^- \to e^- + \bar{\nu}_e$ and $K^- \to \mu^- + \bar{\nu}_\mu$. Compare the observed branching ratios.

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.