Massachusetts Institute of Technology Department of Physics

Course:	8.701 – Introduction to Nuclear and Particle Physics
Term:	Fall 2020
Instructor:	Markus Klute
TA :	Tianyu Justin Yang

Discussion Problems

from recitation on December 3rd, 2020

Problem 1: Scintillator counter

Consider two particles with masses m_1 and m_2 and the same momentum p. Evaluate the difference Δt between the times taken to cross a distance L. Suppose we have two scintillator counters that measure Δt with a resolution of 300 ps. How large must Lbe to distinguish π and K of 4 GeV momentum with two standard deviations?

Consider the difference in energy between particles.

$$E_i^2 = p^2 + m_i^2$$
$$\beta_i = p/E_i = p/\sqrt{p^2 + m_i^2}$$
$$t_i = L/\beta_i = \frac{L}{p}\sqrt{p^2 + m_i^2}$$
$$\Delta t = \frac{L}{p}\left(\sqrt{p^2 + m_1^2} - \sqrt{p^2 + m_2^2}\right)$$

With a resolution of 300ps, $2\sigma = 600$ ps.

$$\begin{split} m_{\pi} &= 140 \ {\rm MeV} \\ m_{K} &= 494 \ {\rm MeV} \\ p &= 4 \ {\rm GeV} \\ L(/c) &= (600 \ {\rm ps} \left(\frac{4000 \ {\rm MeV})^2}{\sqrt{(4000 \ {\rm MeV})^2 + (140 \ {\rm MeV})^2}} - \sqrt{(4000 \ {\rm MeV})^2 + (494 \ {\rm MeV})^2} \right) \\ L &= 25.8 \ {\rm m} \end{split}$$

Problem 2: Syncrotron radiation

Calculated the energy loss per turn for a circular collider due to syncrotron radiation. Assume an electron-positron collider with a center-of-mass energy of 200 GeV and a proton-proton collider of 14 TeV both with radius R = 4.3 km.

•

Synchrotron radiation loss per turn can be quantified:

$$\Delta E = \frac{4\pi}{3} \frac{\alpha \hbar c}{R} \gamma^4$$

= $\frac{4\pi}{3} \frac{1}{137} \frac{197 \text{MeV} \cdot \text{fm}}{R(\text{km}) \cdot 10^{18} (\text{fm/km})} \left(\frac{E}{m}\right)^4$

First, for the 200 GeV electrons,

$$E = 100 \text{ GeV}$$
$$m = 0.511 \text{ MeV}$$
$$\Delta E = \frac{8.83}{R \text{ (km)}} \times 10^3 \text{ MeV}$$
$$\Delta E = 2.057 \text{ GeV}$$

if you assume R = 4.3km, like the LEP ring.

Second, for the protons,

$$E = 7 \text{ TeV}$$
$$m = 0.94 \text{ GeV}$$
$$\Delta E = \frac{18.55}{R \text{ (km)}} \times 10^{-3} \text{ MeV}$$
$$\Delta E = 4.3 \text{ keV}$$

if you assume R = 4.3km, like the LHC.

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.