Massachusetts Institute of Technology Department of Physics

Course: 8.701 - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute
TA: Tianyu Justin Yang

Discussion Problems

from recitation on December 3rd, 2020

Problem 1: Scintillator counter

Consider two particles with masses m_{1} and m_{2} and the same momentum p. Evaluate the difference Δt between the times taken to cross a distance L. Suppose we have two scintillator counters that measure Δt with a resolution of 300 ps . How large must L be to distinguish π and K of 4 GeV momentum with two standard deviations?

Consider the difference in energy between particles.

$$
\begin{array}{r}
E_{i}^{2}=p^{2}+m_{i}^{2} \\
\beta_{i}=p / E_{i}=p / \sqrt{p^{2}+m_{i}^{2}} \\
t_{i}=L / \beta_{i}=\frac{L}{p} \sqrt{p^{2}+m_{i}^{2}} \\
\Delta t=\frac{L}{p}\left(\sqrt{p^{2}+m_{1}^{2}}-\sqrt{p^{2}+m_{2}^{2}}\right)
\end{array}
$$

With a resolution of $300 \mathrm{ps}, 2 \sigma=600 \mathrm{ps}$.

$$
\begin{array}{r}
m_{\pi}=140 \mathrm{MeV} \\
m_{K}=494 \mathrm{MeV} \\
p=4 \mathrm{GeV} \\
L(/ c)=\left(600 \mathrm{ps}\left(\frac{\mathrm{MeV}}{\sqrt{(4000 \mathrm{MeV})^{2}+(140 \mathrm{MeV})^{2}}-\sqrt{(4000 \mathrm{MeV})^{2}+(494 \mathrm{MeV})^{2}}}\right)\right. \\
L=25.8 \mathrm{~m}
\end{array}
$$

Problem 2: Syncrotron radiation

Calculated the energy loss per turn for a circular collider due to syncrotron radiation. Assume an electron-positron collider with a center-of-mass energy of 200 GeV and a proton-proton collider of 14 TeV both with radius $R=4.3 \mathrm{~km}$.

Synchrotron radiation loss per turn can be quantified:

$$
\begin{aligned}
\Delta E & =\frac{4 \pi}{3} \frac{\alpha \hbar c}{R} \gamma^{4} \\
& =\frac{4 \pi}{3} \frac{1}{137} \frac{197 \mathrm{MeV} \cdot \mathrm{fm}}{R(\mathrm{~km}) \cdot 10^{18}(\mathrm{fm} / \mathrm{km})}\left(\frac{E}{m}\right)^{4}
\end{aligned}
$$

First, for the 200 GeV electrons,

$$
\begin{array}{r}
E=100 \mathrm{GeV} \\
m=0.511 \mathrm{MeV} \\
\Delta E=\frac{8.83}{R(\mathrm{~km})} \times 10^{3} \mathrm{MeV} \\
\Delta E=2.057 \mathrm{GeV}
\end{array}
$$

if you assume $\mathrm{R}=4.3 \mathrm{~km}$, like the LEP ring.
Second, for the protons,

$$
\begin{array}{r}
E=7 \mathrm{TeV} \\
m=0.94 \mathrm{GeV} \\
\Delta E=\frac{18.55}{R(\mathrm{~km})} \times 10^{-3} \mathrm{MeV} \\
\Delta E=4.3 \mathrm{keV}
\end{array}
$$

if you assume $\mathrm{R}=4.3 \mathrm{~km}$, like the LHC .

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

