8.701

Introduction to Nuclear

 and Particle PhysicsMarkus Klute - MIT
3. Feynman Calculus 3.3 Toy Theory

Calculating the Amplitude

— — —

- Starting from a toy theory and leaving out spin for now to illustrate the method
- Suppose we have three kinds of particles: A, B, and C
- Primitive vertex with all three particles interacting

Calculating the Amplitude

— - -

- Corrections like

- What is the lifetime of A ?

- Scattering processes

Feynman Rules

- Notation: label incoming and outgoing four-momenta p_{1}, p_{2}, ... p_{n}. Label the internal momenta q_{1}, q_{2}, ... Add an arrow to each line to keep track of the positive direction.
- Vertex faction: for each vertex, write down a factor -ig with g being the coupling constant
- Propagator: for each internal line, write a factor where q_{j} is the 4-momenta of the line and m_{j} the $\frac{i}{q_{j}^{2}-m_{j}^{2} c^{2}}$ mass of the particle. Note $\mathrm{a}_{\mathrm{j}}{ }^{2} \neq \mathrm{m}_{\mathrm{j}}{ }^{2} \mathrm{c}^{2}$.

Feynman Rules

- Energy and momentum conservation: for each vertex write a delta function

$$
(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}+k_{3}\right)
$$

- Integration of internal momenta: for each internal line, write down a factor

$$
\frac{1}{(2 \pi)^{4}} \mathrm{~d}^{4} q_{j}
$$

- The result will include a delta function. Erase it and multiply by i

$$
(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}+\cdots-p_{n}\right)
$$

- Voila, the result is M!

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

