Massachusetts Institute of Technology Department of Physics

Course: 8.701 - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute
TA: Tianyu Justin Yang

Discussion Problems

from recitation on September 24th, 2020

Problem 1: $\quad A \rightarrow B+B$

- Is $A \rightarrow B+B$ a possible process in the ABC theory?
- Suppose a diagram has n_{A} external A lines, n_{B} external B lines, and n_{C} external C lines. Develop a simple criterion for determining whether it is an allowed reaction.
- Assuming A is sufficiently heavy, what is the most likely decay mode, after $A \rightarrow B+C$? Draw a Feynan diagram for each decay.
- 1) No. The process is not possible.

2) Allowed if (and only if) n_{A}, n_{B}, and n_{C} are either all even or all odd.

Take the allowed diagram and snip every internal line. We now have $n_{A}^{\prime}=n_{B}^{\prime}=$ $n_{C}^{\prime}=N$ 'external' lines, where N is the number of vertices. When we now reconnect the internal lines, each join removes two 'external' lines of one species. Thus when they are all back together, we have $n_{A}=N-2 I_{A}, n_{B}=N-2 I_{B}$, and $n_{C}=N-2 I_{C}$, where I_{A} is the number of internal A lines, and so on.Clearly, they're all even, or all odd, depending on the number of vertices.

Given n_{A}, n_{B}, and n_{C}, pick the largest of them (say, n_{A}) and draw that number of vertices, with A, B, C as 'external' lines on each one. Now just connect up B lines in pairs (converting two 'external' lines into one internal line, each time you do so), until you're down to n_{B} - as long as $n A$ and $n B$ are either both even or both odd, you will obviously be able to do so. Now do the same for n_{C}. We have constructed a diagram, then, with n_{A} external A lines, n_{B} external B lines, and n_{C} external C lines.

Figure 1: Answer.

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

