# Massachusetts Institute of Technology Department of Physics 

Course: 8.701 - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute

## Problem Set 4

handed out October 21st, 2020

## Problem 1: Muon decay [20 points]

Consider the decay $\mu \rightarrow e \nu_{\mu} \bar{\nu}_{e}$.


Describe the necessary steps to calculate the lifetime of the $\mu$ as given in the formula above and highlight assumptions you might make in the calculation. [Bonus: you have all tools at hand to carry out the full calculation. Challenge yourself!]

## Problem 2: Neutron decay [20 points]

Consider the decay of a neutron $n \rightarrow p e \nu_{e}$.


Compare this decay with the decay of the $\mu$. Highlight the differences between the two processes and compare the expected electron energy spectra.

## Problem 3: CKM Matrix [20 points]

The purpose of this exercise is review properties of unitary matrices. How many independent real parameters are there in a general $3 \times 3$ unitary matrix? How about $n \times n$ ?. [Hint: It helps to know that any unitary matrix ( U ) can be written in the form $U=e^{i H}$, wher $H$ is a hermitian matrix. So an equivalent question is, how many independent real parameters are there in the general hermitian matrix.] How many independent real parameters are there in a general $3 \times 3$ (real) orthogonal matrix? How about $n \times n$ ?

## Problem 4: Neutrino generations [20 points]

The LEP collider operated initially at $\sqrt{s}=m_{Z}$ to produce the $Z$ boson at the Z pole. The measurement of the cross section allows the estimate of the number of active neutrino generations. Explain how this information can be derived without the detection of $Z$ boson decays to neutrinos.

## Problem 5: Deep inelastic scattering [20 points]

The HERA collider at DESY allowed the study of collisions of 27.5 GeV electrons on 820 GeV proton beams. Calculate the kinematic variables $Q^{2}, x$, and $y$ in terms of the scattered $3^{\circ}<\theta_{e}^{\prime}<177^{\circ}$ calculate the kinematic region $\left(x_{\min }, x_{\max }\right)$ and $\left(Q_{\min }, Q_{\max }\right)$ covered by HERA.

MIT OpenCourseWare
https://ocw.mit.edu

### 8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

