8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT
0. Introduction
0.8 Relativistic Kinematics

Relativistic Kinematics

Often deal with particles traveling close to the speed of light.

$$
\begin{gathered}
\boldsymbol{\beta}=\frac{\boldsymbol{v}}{c}, \quad|\boldsymbol{\beta}|<1 \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \gamma \geq 1
\end{gathered}
$$

Total energy of particle with non-zero mass

$$
E=\gamma m c^{2}
$$

$$
\boldsymbol{p}=\gamma m \boldsymbol{v}=\gamma m c \boldsymbol{\beta}
$$

Relativistic Kinematics

Total energy squared

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4}
$$

Consider $\mathrm{m}=0$ or $\mathrm{p}=0$!

Lorentz-transformation along x-direction

$$
\begin{array}{ll}
t^{\prime}=\gamma(v)\left(t-\frac{v x}{c^{2}}\right), & \\
E^{\prime}=\gamma(v)\left(E-v p_{x}\right) \\
x^{\prime}=\gamma(v)(x-v t), & p_{x}^{\prime}=\gamma(v)\left(p_{x}-\frac{v E}{c^{2}}\right) \\
y^{\prime}=y, & p_{y}^{\prime}=p_{y} \\
z^{\prime}=z, & p_{z}^{\prime}=p_{z}
\end{array}
$$

Example: Relativistic Kinematics

Lorentz-transformation (boost) in z-direction by v_{b}

$$
E^{\prime}=\gamma_{b}\left(E-\frac{v_{b}}{c} p_{z} c\right), \quad p_{z}^{\prime} c=\gamma_{b}\left(p_{z} c-\frac{v_{b}}{c} E\right)
$$

How does $\mathrm{m}^{\prime 2} \mathrm{c}^{4}$ transform?

Multiparticle systems

In collisions or decays, more than one particle is involved. Total energie $\sum_{i} E_{i}$ and total momentum $\sum_{i} \boldsymbol{p}_{i}$ are always conserved (not invariant). Frame indepent is the property

$$
m_{T}^{2} c^{4}=E_{T}^{2}-p_{T}^{2} c^{2}
$$

Consider the case of a particle decay to three daughter particles

$\mathrm{mT}=\mathrm{mx}$, hence the particle can be identified from its decay products.

Fixed target or colliding beams

— - -

Exercise: Fixed target or colliding beams

To make a Z boson of mass 91 GeV by colliding a positron with an electron, both with mass 0.511 MeV we need $\mathrm{Ecm}=\sqrt{ } \mathrm{s}=91 \mathrm{GeV}$. The beam energy needed is 45.5 GeV . However, of the positron collided with a fixed target of stationary electrons, what is the minimal positron beam energy to produce Z bosons?

More implications of $\mathrm{E}=\mathrm{mc}^{2}$

1) $E=K+m_{0} c^{2}=\gamma m_{0} c^{2}$

At LEP @ CERN, electrons and positron were accelerated to 100 GeV . How large was γ ?
2) How much energy do we need to split a proton and neutron (deuteron)?
3) An excited particle emits a photon. Under which condition can this photon be reabsorbed?
4) What is the minimal beam energy in a proton on proton fixed target experiment to produce anti-protons?

More implications of $\mathrm{E}=\mathrm{mc}^{2}$

4) Assume the decay of a pion at rest into an electron and positron. How fast are the decay products?
5) What is the minimal energy of a proton colliding with a proton at rest to produce a $p+n+n^{+}$?
6) Compton effect. The energy of a photon is $\mathrm{E}=\mathrm{hv}=\mathrm{h} / \lambda$. Calculate the change in the photons wavelength.

Exercise: Fixed target or colliding beams (solution)

$$
\begin{aligned}
& \text { - - - } \\
& \mathrm{m}_{1} \\
& \mathrm{~m}_{2} \\
& s=m_{T}^{2} c^{4}=E_{T}^{2}-p_{T}^{2} c^{2}=E_{1}^{2}+2 E_{1} m_{2} c^{2}+m_{2}^{2} c^{4}-E_{1}^{2}+m_{1}^{2} c^{4}=2 E_{1} m_{2} c^{2}+m_{1}^{2} c^{4}+m_{2}^{2} c^{4} \\
& E_{1}=\frac{s-m_{1}^{2} c^{4}-m_{2}^{2} c^{4}}{2 m_{2} c^{2}}
\end{aligned}
$$

$E_{1} \approx s / 2 m_{e} c^{2}=8.1 \mathbf{P e V}=8100000 \mathbf{G e V}$

Example: Relativistic Kinematics (solution)

Lorentz-transformation (boost) in z-direction by v_{b}

$$
E^{\prime}=\gamma_{b}\left(E-\frac{v_{b}}{c} p_{z} c\right), \quad p_{z}^{\prime} c=\gamma_{b}\left(p_{z} c-\frac{v_{b}}{c} E\right)
$$

How does $\mathrm{m}^{\prime 2} \mathrm{c}^{4}$ transform? It is invariant!

$$
\begin{aligned}
m^{\prime 2} c^{4} & =E^{\prime 2}-p^{\prime 2} c^{2} \\
& =\gamma_{b}^{2}\left(E^{2}-2 E v_{b} p_{z}+v_{b}^{2} p_{z}^{2}\right)-p_{x}^{2} c^{2}-p_{y}^{2} c^{2}-\gamma_{b}^{2}\left(p_{z}^{2} c^{2}-2 E v_{b} p_{z}+\frac{v_{b}^{2} E^{2}}{c^{2}}\right) \\
& =\gamma_{b}^{2}\left(E^{2}-p_{z}^{2} c^{2}\right)\left(1-\frac{v_{b}^{2}}{c^{2}}\right)-p_{x}^{2} c^{2}-p_{y}^{2} c^{2} \\
& =E^{2}-p_{x}^{2} c^{2}-p_{y}^{2} c^{2}-p_{z}^{2} c^{2}=m^{2} c^{4}
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

