Massachusetts Institute of Technology Department of Physics

Course:	8.701 – Introduction to Nuclear and Particle Physics
Term:	Fall 2020
Instructor:	Markus Klute
TA :	Tianyu Justin Yang

Discussion Problems

from recitation on $\mathbf{December}\ \mathbf{3rd},\ \mathbf{2020}$

Problem 1: Scintillator counter

Consider two particles with masses m_1 and m_2 and the same momentum p. Evaluate the difference Δt between the times taken to cross a distance L. Suppose we have two scintillator counters that measure Δt with a resolution of 300 ps. How large must Lbe to distinguish π and K of 4 GeV momentum with two standard deviations?

Problem 2: Syncrotron radiation

Calculated the energy loss per turn for a circular collider due to syncrotron radiation. Assume an electron-positron collider with a center-of-mass energy of 200 GeV and a proton-proton collider of 14 TeV both with radius R = 4.3 km.

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.