Massachusetts Institute of Technology Department of Physics

Course: $\quad 8.701$ - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute
TA: Tianyu Justin Yang

Discussion Problems

from recitation on December 3rd, 2020

Problem 1: Scintillator counter

Consider two particles with masses m_{1} and m_{2} and the same momentum p. Evaluate the difference Δt between the times taken to cross a distance L. Suppose we have two scintillator counters that measure Δt with a resolution of 300 ps . How large must L be to distinguish π and K of 4 GeV momentum with two standard deviations?

Problem 2: Syncrotron radiation

Calculated the energy loss per turn for a circular collider due to syncrotron radiation. Assume an electron-positron collider with a center-of-mass energy of 200 GeV and a proton-proton collider of 14 TeV both with radius $R=4.3 \mathrm{~km}$.

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

