# Massachusetts Institute of Technology Department of Physics 

Course: 8.701 - Introduction to Nuclear and Particle Physics

Term: Fall 2020
Instructor: Markus Klute
TA: Tianyu Justin Yang

## Discussion Problems

from recitation on September 29th, 2020

## Problem 1: $\quad \gamma$-matrices

By considering the three cases $\mu=\nu=0, \mu=\nu \neq 0$, and $\mu \neq \nu$ show that $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$.

- Just consider the cases, $\mu=\nu=0, \mu=\nu=k=1,2,3$ and $\mu \neq \nu$ and use the commutation relations.


## Problem 2: Negative energy solutions

Consider the $e^{+} e-\rightarrow \gamma \rightarrow e^{+} e-$ annihilation process in the center-of-mass frame where the energy of the photon is $2 E$. Discuss energy and charge conservation for the two cases where:
(a) the negative energy solutions of the Dirac equation are interpreted as negative energy particles propagating backwards in time;
(b) the negative energy solutions of the Dirac equation are interpreted as positive energy antiparticles propagating forwards in time.

- (a) In the first interpretation (left diagram), the intial-state positive $e^{-}$of energy + E emits a photon of energy 2 E . To conserve energy it is now a negative energy $e^{-}$ and therefore propagates backwards in time. At the other vertex, the photon interacts with a negative energy $e^{-}$, which is propagating backwards in time and scattering results in a positive energy $e^{-}$.
(b) In the Feynman-Stückelberg interpretation (right diagram), the intial-state positive $e^{-}$of energy +E annihilates with a positive energy $e^{+}$to produce a photon of energy 2E. At the second vertex the photon produces an $e^{+} e^{-}$pair. All particles propagate forwards in time


MIT OpenCourseWare
https://ocw.mit.edu

### 8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

