8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

2. Symmetries
 2.5 CP (violation)

Charge Conjugation and Parity (CP)

We have seen that the weak interaction is not invariant under P and C transformation, but how about CP?

Example:

The Kaon System

Assuming CP is conserved one concludes for $\rm K_{1}$ and $\rm K_{2}$ decays

$$K_1 \rightarrow 2\pi$$
, $K_2 \rightarrow 3\pi$

$$\tau_1 = 0.895 \times 10^{-10} \text{ sec}$$

 $\tau_2 = 5.11 \times 10^{-8} \text{ sec}$
 $m_2 - m_1 = 3.48 \times 10^{-6} \text{ eV/c}^2$

Perfect test of CP invariance!

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Testing CP invariance

As K_1 decay much faster than $K_2,$ a pure beam of K_2 can be produced from K_0 by letting all K_1 decay.

Finding 2π decays in the beam of $\mathrm{K_2}$ is a clear indication of CP violation.

Croning and Fitch conducted this experiment in 1964. They counted 45 2pi events in 22700 decays.

$$|K_L\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}}(|K_2\rangle + \epsilon |K_1\rangle)$$

Cronin and Fitch Experiment

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON*[†]

J. H. Christenson, J. W. Cronin,[‡] V. L. Fitch,[‡] and R. Turlay[§] Princeton University, Princeton, New Jersey (Received 10 July 1964)

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Water cerenkov

Water cerenkov

© American Physical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

27 JULY 1964

Testing CP invariance

Semileptonic K, decays also show evidence for CP violation in

(a) $\pi^+ + e^- + \overline{\nu}_e$ or (b) $\pi^- + e^+ + \nu_e$

More $K_{\rm L}$ decay to positrons than into an electron by a fractional amount of 3.3×10^{-3}

CP violation has also been shown in B meson systems and tests in the neutrino sector are under way.

Matter - Antimatter Asymmetry

One of the biggest mysteries in physics!

1967, Sakharov proposed three necessary conditions that baryon generating interactions must satisfy to produce matter and antimatter at different rates

- 1) Baryon number violation
- 2) C and CP violation
- 3) Interaction out of equilibrium

Preview

	Bilinear	Р	С	Т	CP	CPT
scalar	$\overline{\psi}_1\psi_2$	$\overline{\psi}_1\psi_2$	$\overline{\psi}_2\psi_1$	$\overline{\psi}_1\psi_2$	$\overline{\psi}_2\psi_1$	$\overline{\psi}_2\psi_1$
pseudo scalar	$\overline{\psi}_1\gamma_5\psi_2$	$-\overline{\psi}_1\gamma_5\psi_2$	$\overline{\psi}_2\gamma_5\psi_1$	- $\overline{\psi}_1\gamma_5\psi_2$	- $\overline{\psi}_2\gamma_5\psi_1$	$\overline{\psi}_2\gamma_5\psi_1$
vector	$\overline{\psi}_1\gamma_\mu\psi_2$	$ \ \overline{\psi}_1 \gamma^\mu \psi_2$	- $\overline{\psi}_2\gamma_\mu\psi_1$	$\overline{\psi}_1 \gamma^\mu \psi_2$	$-\overline{\psi}_2\gamma^\mu\psi_1$	- $\overline{\psi}_2\gamma_\mu\psi_1$
axial vector	$\overline{\psi}_1\gamma_\mu\gamma_5\psi_2$	$-\overline{\psi}_1\gamma^\mu\gamma_5\psi_2$	$\overline{\psi}_2\gamma_\mu\gamma_5\psi_1$	$\overline{\psi}_1 \gamma^\mu \gamma_5 \psi_2$	$-\overline{\psi}_2\gamma^\mu\gamma_5\psi_1$	- $\overline{\psi}_2\gamma_\mu\gamma_5\psi_1$
tensor	$\overline{\psi}_1 \sigma_{\mu u} \psi_2$	$\mid \overline{\psi}_1 \sigma^{\mu u} \psi_2$	- $\overline{\psi}_2\sigma_{\mu u}\psi_1$	- $\overline{\psi}_1 \sigma^{\mu u} \psi_2$	$-\overline{\psi}_2\sigma^{\mu u}\psi_1$	$\overline{\psi}_2 \sigma_{\mu u} \psi_1$

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.