8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT
4. QED
4.1 Free Wave Equations

Klein-Gordon wave equation

Relativistic energy-momentum relation

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4}
$$

Use quantum mechanical operators

$$
\begin{gathered}
E_{\mathrm{op}}=i \hbar \frac{\partial}{\partial t}, \quad p_{\mathrm{op}}=-i \hbar \nabla=-i \hbar \frac{\partial}{\partial \mathbf{r}} \\
\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=\nabla^{2} \psi-\frac{m^{2} c^{2}}{\hbar^{2}} \psi
\end{gathered} \frac{\partial^{2} \psi}{\partial t^{2}}=\left(\nabla^{2}-m^{2}\right) \psi .
$$

Weyl equation

Attempt to find 1st order equation in both derivatives

$$
\frac{\partial \psi}{\partial t}= \pm\left(\sigma_{1} \frac{\partial \psi}{\partial x}+\sigma_{2} \frac{\partial \psi}{\partial y}+\sigma_{3} \frac{\partial \psi}{\partial z}\right)= \pm \sigma \cdot \frac{\partial}{\partial \mathbf{r}} \psi
$$

with σ 's being unknown constants. To satisfy the Klein-Gordon eq., we square and equate the coefficients

$$
\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=1 \quad \sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{1}=0, \quad \text { etc. } \quad m=0
$$

Pauli matrices

The σ 's can not be numbers as they do not commute, but can be represented by matrices.

The equations define 2×2 Pauli matrices.

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Two Weyl equations with spinors are separate solutions

$$
E \chi=-\sigma \cdot \mathbf{p} \chi
$$

$$
E \phi=+\sigma \cdot \mathbf{p} \phi
$$

Dirac equations

Including mass terms

$$
E \psi=(\boldsymbol{\alpha} \cdot \mathbf{p}+\beta m) \psi
$$

with a 4 component spinor (particle, antiparticle, and two spin states each) and with \mathbf{a} and β being 4×4 matrices

$$
\alpha=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Dirac equations

Including mass terms

$$
E \psi=(\boldsymbol{\alpha} \cdot \mathbf{p}+\beta m) \psi
$$

with a 4 component spinor (particle, antiparticle, and two spin states each) and with \mathbf{a} and β being 4×4 matrices

$$
\alpha=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Dirac equations

$$
\begin{aligned}
& \left(i \gamma_{\mu} \frac{\partial}{\partial x_{\mu}}-m\right) \psi=0 \\
& \gamma_{k}=\beta \alpha_{k}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma}_{k} \\
-\boldsymbol{\sigma}_{k} & 0
\end{array}\right), \quad k=1,2,3 \quad \text { and } \quad \gamma_{4}=\beta
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

