Massachusetts Institute of Technology

Department of Physics

Course: 8.701 — Introduction to Nuclear and Particle Physics Term: Fall 2020 Instructor: Markus Klute

Problem Set 5

handed out November 4th, 2020

Problem 1: The T2K Experiment[50 points]

The T2K experiment uses an off-axis ν_{μ} beam from $\pi^+ \to \mu^+ \nu_{\mu}$ decays. Consider the case where the pion has velocity β along the z-direction in the laboratory frame and a neutrino with energy E^* is produced at an angle θ^* with respect to the z'-axis in the π^+ rest frame.

(a) Show that the neutrino energy in the pion rest frame is $p^* = (m_{\pi}^2 - m_{\mu}^2)/2m_{\pi}$.

(b) Show that the energy E and angle of the production θ of the neutrino in the laboratory frame are $E = \gamma E^*(1 + \beta \cos \theta^*)$ and $E \cos \theta = \gamma E^*(\cos \theta^* + \beta)$ where $\gamma = E_{\pi}/m_{\pi}$

(c) Using the expressions for E^* and θ^* in terms of E and θ , show that $\gamma^2(1-\beta\cos\theta)(1+\beta\cos\theta^*)=1.$

(d) Show that the maximum value of θ in the labortory frame is $\theta_{max} = 1/\gamma$.

(e) In the limit $\theta \ll 1$ show that $E \approx 0.43 E_{\pi} \frac{1}{1+\beta\gamma^2\theta^2}$ and therefore on-axis ($\theta = 0$) the neutrino energy spectrum follows that of the pions.

(f) Assuming that the pions have a flat spectrum in the range 1-5 GeV, sketch the form of the resulting neutrino energy spectrum at the T2K far detector (Super-Kamiokande), which is off-axis at $\theta = 2.5^{\circ}$. Given that the Super-Kamiokande detector is 295 km from the beam, explain why this angle was chosen.

Problem 2: Nuclear Stability [30 points]

The Weizäcker formula or semi-empirical mass formula is a parametrization of nuclear mass as a function of A and Z. Following this formula, the mass of an atom with Z protons and N neutrons is given by the following:

 $M(A,Z) = NM_n + ZM_p + Zm_e - a_VA + a_sA^{2/3} + a_c\frac{Z^2}{A^{1/3}} + a_a\frac{(N-Z)^2}{4A} + \frac{\delta}{A^{1/2}}$ with N = A - Z.

The exact values of the parameters a_V, a_s, a_c, a_a , and δ depend on the range of masses for which they are optimized. One possible set of parameters is given by the following:

 $a_V = 15.67 \text{ MeV/c}^2$, $a_s = 17.23 \text{ MeV/c}^2$, $a_c = 0.714 \text{ MeV/c}^2$, $a_a = 93.15 \text{ MeV/c}^2$ and $\delta = -11.2, 0, +11.2 \text{ MeV/c}^2$ for even Z and Z, odd A, or odd Z and N, respectively.

For fixed A find the proton number Z for the most stable nucleus, and plot Z as a function of A. Each term captures an aspect of the atom. Explain briefly how the individual terms can be interpreted.

Problem 3: Decay time dating [20 points]

Naturally occurring uranium is a mixture of the 238 U (99.28%) and 235 U (0.72%) isotopes.

How old must the material of the solar system be if one assumes that at its creation both isotopes were present in equal quantities? The lifetimes are $\tau(^{235}\text{U}) = 1 \times 10^9$ years and $\tau(^{238}\text{U}) = 6.6 \times 10^9$ years.

How much of the $^{238}\mathrm{U}$ has decayed since the formation of the earth's crust 2.5×10^9 years ago?

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.