Massachusetts Institute of Technology Department of Physics

Course: 8.701 - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute

Problem Set 5

handed out November 4th, 2020

Problem 1: The T2K Experiment[50 points]

The T2K experiment uses an off-axis ν_{μ} beam from $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ decays. Consider the case where the pion has velocity β along the z-direction in the laboratory frame and a neutrino with energy E^{*} is produced at an angle θ^{*} with respect to the z^{\prime}-axis in the π^{+}rest frame.
(a) Show that the neutrino energy in the pion rest frame is $p^{*}=\left(m_{\pi}^{2}-m_{\mu}^{2}\right) / 2 m_{\pi}$.
(b) Show that the energy E and angle of the production θ of the neutrino in the laboratory frame are $E=\gamma E^{*}\left(1+\beta \cos \theta^{*}\right)$ and $E \cos \theta=\gamma E^{*}\left(\cos \theta^{*}+\beta\right)$ where $\gamma=E_{\pi} / m_{\pi}$
(c) Using the expressions for E^{*} and θ^{*} in terms of E and θ, show that $\gamma^{2}(1-\beta \cos \theta)\left(1+\beta \cos \theta^{*}\right)=1$.
(d) Show that the maximum value of θ in the labortory frame is $\theta_{\max }=1 / \gamma$.
(e) In the limit $\theta \ll 1$ show that $E \approx 0.43 E_{\pi} \frac{1}{1+\beta \gamma^{2} \theta^{2}}$ and therefore on-axis $(\theta=0)$ the neutrino energy spectrum follows that of the pions.
(f) Assuming that the pions have a flat spectrum in the range 1-5 GeV, sketch the form of the resulting neutrino energy spectrum at the T2K far detector (SuperKamiokande), which is off-axis at $\theta=2.5^{\circ}$. Given that the Super-Kamiokande detector is 295 km from the beam, explain why this angle was chosen.

Problem 2: Nuclear Stability [30 points]

The Weizäcker formula or semi-empirical mass formula is a parametrization of nuclear mass as a function of A and Z. Following this formula, the mass of an atom with Z protons and N neutrons is given by the following:
$M(A, Z)=N M_{n}+Z M_{p}+Z m_{e}-a_{V} A+a_{s} A^{2 / 3}+a_{c} \frac{Z^{2}}{A^{1 / 3}}+a_{a} \frac{(N-Z)^{2}}{4 A}+\frac{\delta}{A^{1 / 2}}$ with $N=A-Z$.

The exact values of the parameters $a_{V}, a_{s}, a_{c}, a_{a}$, and δ depend on the range of masses for which they are optimized. One possible set of parameters is given by the following:
$a_{V}=15.67 \mathrm{MeV} / \mathrm{c}^{2}, a_{s}=17.23 \mathrm{MeV} / \mathrm{c}^{2}, a_{c}=0.714 \mathrm{MeV} / \mathrm{c}^{2}, a_{a}=93.15 \mathrm{MeV} / \mathrm{c}^{2}$ and $\delta=-11.2,0,+11.2 \mathrm{MeV} / \mathrm{c}^{2}$ for even Z and Z, odd A, or odd Z and N, respectively.

For fixed A find the proton number Z for the most stable nucleus, and plot Z as a function of A. Each term captures an aspect of the atom. Explain briefly how the individual terms can be interpreted.

Problem 3: Decay time dating [20 points]

Naturally occurring uranium is a mixture of the ${ }^{238} \mathrm{U}(99.28 \%)$ and ${ }^{235} \mathrm{U}(0.72 \%)$ isotopes.

How old must the material of the solar system be if one assumes that at its creation both isotopes were present in equal quantities? The lifetimes are $\tau\left({ }^{235} \mathrm{U}\right)=1 \times 10^{9}$ years and $\tau\left({ }^{238} \mathrm{U}\right)=6.6 \times 10^{9}$ years.

How much of the ${ }^{238} \mathrm{U}$ has decayed since the formation of the earth's crust 2.5×10^{9} years ago?

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

