Massachusetts Institute of Technology Department of Physics

Course:	8.701 – Introduction to Nuclear and Particle Physics
Term:	Fall 2020
Instructor:	Markus Klute
TA :	Tianyu Justin Yang

Discussion Problems

from recitation on November 12th, 2020

Problem 1: Binding energy of iron

The iron nuclide ${}^{56}_{26}$ Fe lies near the top of the binding energy curve and is one of the most stable nuclides. What is the binding energy per nuclean (in MeV) for the nuclide ${}^{56}_{26}$ Fe (atmic mass of 55.9349 amu)?

Problem 2: Carbon dating

You find a pottery shard containing 1g of carbon. Its activity is 0.0231 Bq (decays per second). How old is it? Same background: ¹⁴C is radioactive and produced in the upper atmosphere and we find in living things a ratio of $\frac{^{14}C}{^{12}C}$ of 1.2×10^{-12} . The half-life of ¹⁴C is 5730 years.

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.