Massachusetts Institute of Technology Department of Physics

Course: 8.701 - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute

Problem Set 2

handed out September 23rd, 2020

Problem 1: Complex scalar field [20 points]

The Lagrangian for a complex scalar field $\mathcal{L}_{s}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{*} \phi$ possesses a global $U(1)$ symmetry. Use Noether's theorem to identify the conserved current.

Problem 2: $\quad A \rightarrow B+C$ [20 points]

Show that $\left|\vec{p}_{C M}\right|=\frac{1}{2 m_{A}} \sqrt{\left(m_{A}^{2}-\left(m_{B}+m_{C}\right)^{2}\right)\left(m_{A}^{2}-\left(m_{B}-m_{C}\right)^{2}\right)}$ for $A \rightarrow B+C$.
Problem 3: $\quad A+A \rightarrow A+A$ [20 points]
Draw all possible lowest-order diagrams for $A+A \rightarrow A+A$ in our toy theory and find the amplitude for this process assuming $m_{B}=m_{C}=0$. Leave your answer in the form of an integral over the remaining four-momentum q.

Problem 4: $\quad A+A \rightarrow B+B$ [20 points]

Calculate $\frac{d \sigma}{d \Omega}$ for $A+A \rightarrow B+B$ a) in the center-of-mass frame and b) in the lab frame at lowest order. Assume $m_{B}=m_{C}=0$ in a toy theory without spin. For a), calculate the total cross section σ. For b), determine the non-relativistic and ultra-relativiistic limits.

Problem 5: QED Feynman diagrams [20 points]

Draw the leading-order Feynman diagrams(s) for the following processes:

- Compton scattering - $\gamma e^{-} \rightarrow \gamma e^{-}$
- Pair annihilation - $e^{+} e^{-} \rightarrow \gamma \gamma$
- Light-by-light scattering - $\gamma \gamma \rightarrow \gamma \gamma$
- Moller scattering - $e^{-} e^{-} \rightarrow e^{-} e^{-}$
- Bhabha scattering - $e^{+} e^{-} \rightarrow e^{+} e^{-}$

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

