8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

8. Neutrinos
8.4 Experimental Study

Neutrino Production

Experimental Studies of Neutrino Oscillations

Experiment		$L(\mathrm{~m})$	$E(\mathrm{MeV})$	$\left\|\Delta m^{2}\right\|\left(\mathrm{eV}^{2}\right)$
Solar		10^{10}	1	10^{-10}
Atmospheric		$10^{4}-10^{7}$	$10^{2}-10^{5}$	$10^{-1}-10^{-4}$
Reactor	SBL	$10^{2}-10^{3}$	1	$10^{-2}-10^{-3}$
	LBL	$10^{4}-10^{5}$		$10^{-4}-10^{-5}$
Accelerator	SBL	10^{2}	$10^{3}-10^{4}$	>0.1
	LBL	$10^{5}-10^{6}$	$10^{3}-10^{4}$	$10^{-2}-10^{-3}$

Solar Neutrinos

Solar Neutrinos

\qquad

© Physical Review D. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/fairuse.

Solar Neutrinos

In the electron "soup"
The v_{e} sees a CC and NC potential
The v_{μ} and ν_{τ} see only the NC potential
There is flavor evolution as the neutrinos traverse the sun.

But the equations do not
simplify to oscillations

ve	other flavor(s)
The result looks like	
disappearance in detectors	
sensitive to only	
v_{e} flavors...	

Solar Neutrinos

The famous "Solar Neutrino Deficit"

Total Rates: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000

The rate of morphing with energy depends on
$\Delta \mathrm{m}^{2}$ and the mixing angle

Solar Neutrinos

Of course it is only a deficit if you can only see $v_{\mathrm{e}} \mathrm{CC}$ scatters!

SNO: $\phi_{v_{\mathrm{e}}}+\phi_{v_{\mu}}+\phi_{v_{\tau}}=(4.94 \pm 0.21 \pm 0.36) \times 10^{6} / \mathrm{cm}^{2} \mathrm{sec}$
Theory: $\quad \phi_{\text {total }}=(5.69 \pm 0.91) \times 10^{6} / \mathrm{cm}^{2} \mathrm{sec}$
Bahcall, Basu, Serenelli
The NC interaction shows the neutrinos are still there!

Solar Neutrino Experiments

Name	Target material	Energy threshold (MeV)	Mass (ton)	Years
Homestake	$\mathrm{C}_{2} \mathrm{Cl}_{4}$	0.814	615	$1970-1994$
SAGE	Ga	0.233	50	$1989-$
GALLEX	GaCl_{3}	0.233	$100[30.3$ for Ga] $1991-1997$	
GNO	GaCl_{3}	0.233	$100[30.3$ for Ga]	$1998-2003$
Kamiokande	$\mathrm{H}_{2} \mathrm{O}$	6.5	3,000	$1987-1995$
Super-Kamiokande	$\mathrm{H}_{2} \mathrm{O}$	3.5	50,000	$1996-$
SNO	$\mathrm{D}_{2} \mathrm{O}$	3.5	1,000	$1999-2006$
KamLAND	Liquid scintillator	$0.5 / 5.5$	1,000	$2001-2007$
Borexino	Liquid scintillator	0.19	300	$2007-$

Atmospheric Neutrinos

Neutrinos produced by decays of pions and kaons generated in the interaction of cosmic rays and nucleons in the Earth's atmosphere.

$$
\begin{aligned}
& \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \\
& \mu^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\mu} \\
& \left(\nu_{\mu}+\bar{\nu}_{\mu}\right) /\left(\nu_{e}+\bar{\nu}_{e}\right)
\end{aligned}
$$

Atmospheric Neutrinos

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/fairuse.

Accelerator Neutrinos

Name	Beamline	Far Detector	$\mathrm{L}(\mathrm{km})$	$\mathrm{E}_{\nu}(\mathrm{GeV})$	Year
K2K	KEK-PS	Water Cherenkov	250	1.3	$1999-2004$
MINOS	NuMI	Iron-scintillator	735	3	$2005-2013$
MINOS+	NuMI	Iron-scintillator	735	7	$2013-2016$
OPERA	CNGS	Emulsion	730	17	$2008-2012$
ICARUS	CNGS	Liquid argon TPC	730	17	$2010-2012$
T2K	J-PARC	Water Cherenkov	295	0.6	$2010-$
NOvA	NuMI	Liquid scint. tracking calorimeter	810	2	$2014-$

Accelerator Neutrinos

Accelerator Neutrinos

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Reactor Neutrinos

- - -

Using neutrinos from nuclear fission of heavy isotopes, mainly ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu}$, and ${ }^{241} \mathrm{Pu}$.

Flux can be calculated from thermal power output and fuel consumption

Study anti-electron-neutrino disappearance with $\quad \bar{\nu}_{e}+p \rightarrow e^{+}+n$

Name	Reactor power $\left(\mathrm{GW}_{\text {th }}\right)$	Baseline (km)	Detector mass (t)	Year
KamLAND	various	180 (ave.)	1,000	$2001-$
Double Chooz	4.25×2	1.05	8.3	$2011-2018$
Daya Bay	2.9×6	1.65	20×4	$2011-$
RENO	2.8×6	1.38	16	$2011-$
JUNO	26.6 (total)	53	20,000	

Reactor Neutrinos

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

