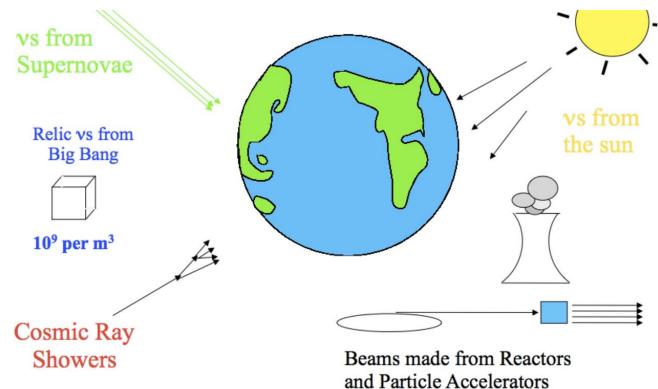
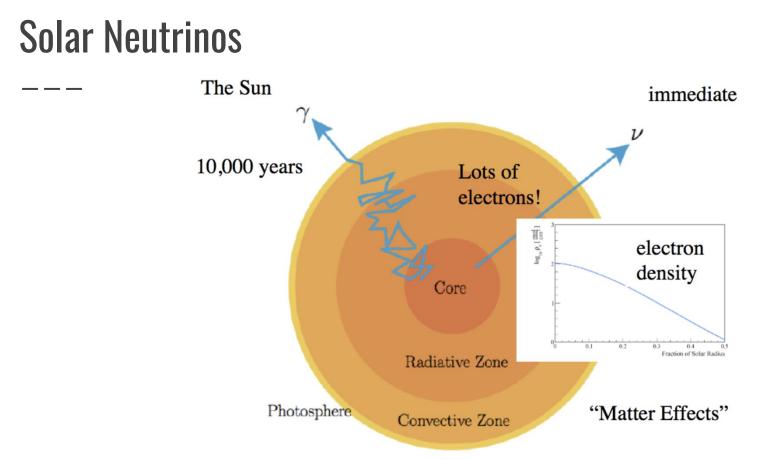
8.701

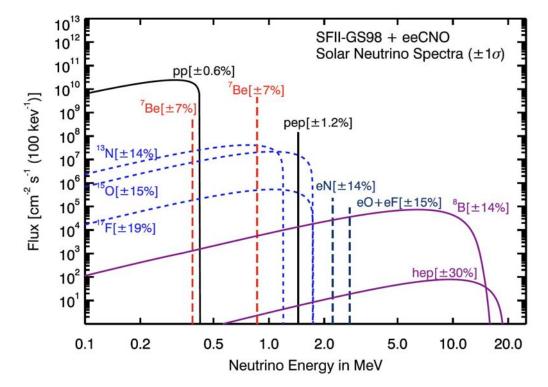

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

8. Neutrinos

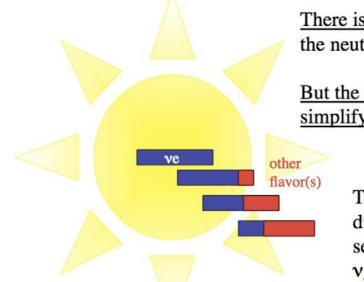

8.4 Experimental Study

Neutrino Production



Experimental Studies of Neutrino Oscillations

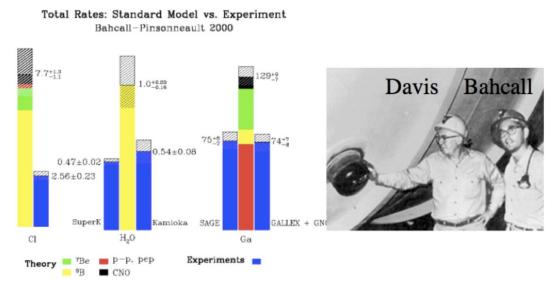
Experiment		L (m)	E (MeV)	$ \Delta m^2 $ (eV ²)
Solar		10^{10}	1	10^{-10}
Atmospheric		$10^4 - 10^7$	$10^2 - 10^5$	$10^{-1} - 10^{-4}$
Reactor	SBL	$10^2 - 10^3$	1	$10^{-2} - 10^{-3}$
	LBL	$10^4 - 10^5$		$10^{-4} - 10^{-5}$
Accelerator	SBL	10^{2}	$10^3 - 10^4$	> 0.1
	LBL	$10^5 - 10^6$	$10^3 - 10^4$	$10^{-2} - 10^{-3}$



© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

© Physical Review D. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

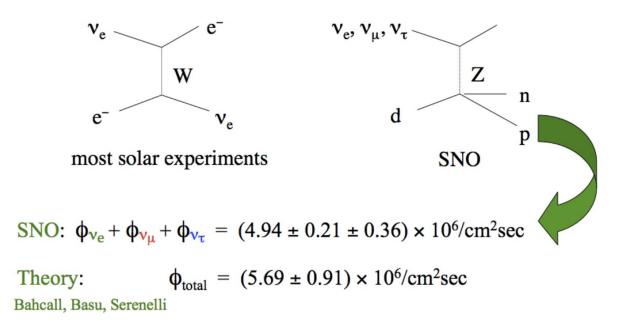
In the electron "soup" The v_e sees a CC and NC potential The v_{μ} and v_{τ} see only the NC potential


<u>There is flavor evolution</u> as the neutrinos traverse the sun.

But the equations do not simplify to oscillations

> The result looks like disappearance in detectors sensitive to only v_e flavors...

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.


The famous "Solar Neutrino Deficit"

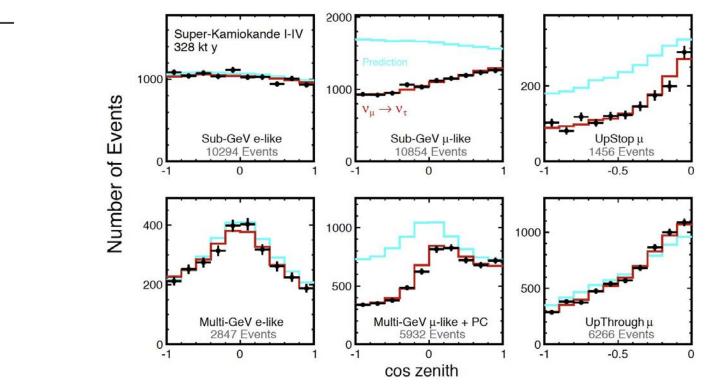
© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

The rate of morphing with energy depends on Δm^2 and the mixing angle

Of course it is only a deficit if you can only see v_e CC scatters!

The NC interaction shows the neutrinos are still there!

Solar Neutrino Experiments

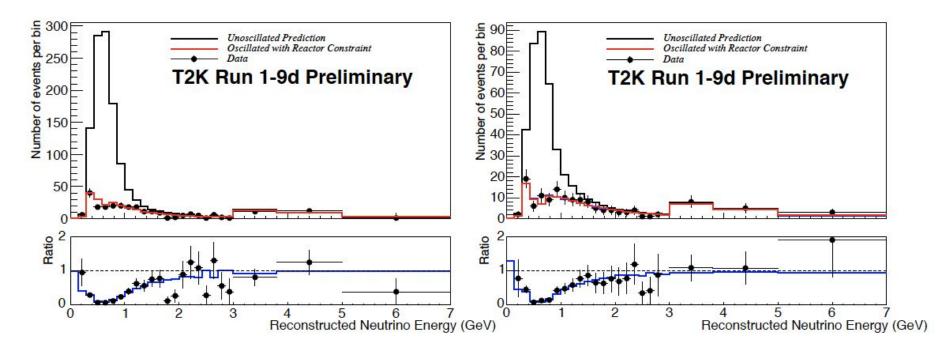

Name	Target material	Energy threshold (MeV)	Mass (ton)	Years
Homestake	C_2Cl_4	0.814	615	1970 - 1994
SAGE	Ga	0.233	50	1989 -
GALLEX	$GaCl_3$	0.233	100 [30.3 for Ga]	1991 - 1997
GNO	GaCl_3	0.233	100 [30.3 for Ga]	1998 - 2003
Kamiokande	H_2O	6.5	3,000	1987 - 1995
Super-Kamiokande	H_2O	3.5	50,000	1996 -
SNO	D_2O	3.5	1,000	1999 - 2006
KamLAND	Liquid scintillator	0.5/5.5	1,000	2001 - 2007
Borexino	Liquid scintillator	0.19	300	2007 -

Atmospheric Neutrinos

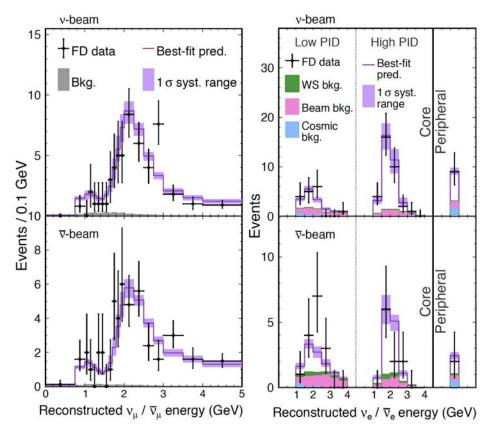
Neutrinos produced by decays of pions and kaons generated in the interaction of cosmic rays and nucleons in the Earth's atmosphere.

$$\pi^+ \to \mu^+ \nu_\mu$$
$$\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$$
$$(\nu_\mu + \bar{\nu}_\mu) / (\nu_e + \bar{\nu}_e)$$

Atmospheric Neutrinos



 \bigcirc Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

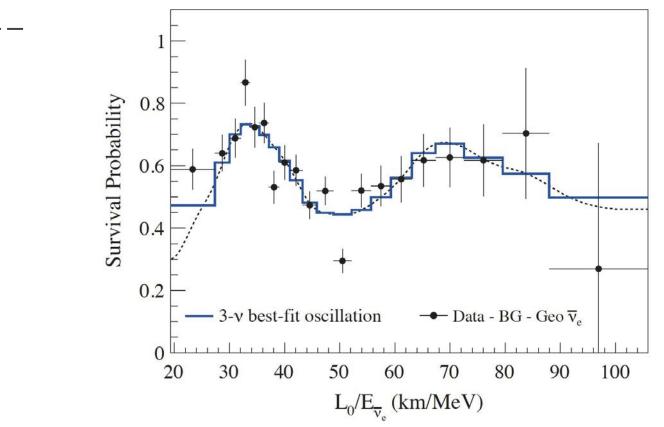

Accelerator Neutrinos

Name	Beamline	Far Detector	L (km)	E_{ν} (GeV)	Year
K2K	KEK-PS	Water Cherenkov	250	1.3	1999 - 2004
MINOS	NuMI	Iron-scintillator	735	3	2005 - 2013
MINOS+	NuMI	Iron-scintillator	735	7	2013 - 2016
OPERA	CNGS	Emulsion	730	17	2008 - 2012
ICARUS	CNGS	Liquid argon TPC	730	17	2010 - 2012
T2K	J-PARC	Water Cherenkov	295	0.6	2010 -
NOvA	NuMI	Liquid scint. tracking calorimeter	810	2	2014 -

Accelerator Neutrinos

Accelerator Neutrinos

Reactor Neutrinos


Using neutrinos from nuclear fission of heavy isotopes, mainly $^{235}\text{U},~^{238}\text{U},~^{239}\text{Pu},$ and $^{241}\text{Pu}.$

Flux can be calculated from thermal power output and fuel consumption

Study anti-electron-neutrino disappearance with $\bar{\nu}_e + p \rightarrow e^+ + n$

Name	Reactor power (GW_{th})	Baseline (km)	Detector mass (t)	Year
KamLAND	various	180 (ave.)	1,000	2001 -
Double Chooz	4.25×2	1.05	8.3	2011 - 2018
Daya Bay	2.9×6	1.65	20×4	2011 -
RENO	2.8×6	1.38	16	2011 -
JUNO	26.6 (total)	53	20,000	

Reactor Neutrinos

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.