Massachusetts Institute of Technology

Department of Physics

Course: 8.701 – Introduction to Nuclear and Particle Physics

Term: Fall 2020

Instructor: Markus Klute

TA: Tianyu Justin Yang

Discussion Problems

from recitation on October 20th, 2020

Problem 1: Tau Decay

The liftetime of the muon can be calculated to

$$\tau = \frac{1}{\Gamma} = \left(\frac{M_{\rm W}}{m_{\mu} g_{\scriptscriptstyle \rm W}}\right)^4 \frac{12 \hbar (8\pi)^3}{m_{\mu} c^2}$$

Use this equation to calculate the lifetime of the tau and compare with the experimental values. Discuss the result.

•

(Note that $m_\mu/m_\tau=0.059$, so it is reasonable to assume $m_\mu\ll m_\tau$.) The rate goes as the fifth power of the decaying particle's mass. But the τ can also go to $e+\bar{v}_e+v_\tau$, with the same rate. So

$$\frac{\tau(\tau \to \text{leptons})}{\tau(\mu \to \text{leptons})} = \frac{m_\mu^5}{2m_\tau^5}, \quad \text{or} \boxed{\tau_\tau = \frac{1}{2} \left(\frac{m_\mu}{m_\tau}\right)^5 \tau_\mu}\,.$$

Numerically:

$$\tau_{\tau} = \frac{1}{2} \left(\frac{105.66}{1777} \right)^5 (2.197 \times 10^{-6} \; \mathrm{s}) = \boxed{8.16 \times 10^{-13} \; \mathrm{s}}.$$

The actual lifetime is 2.91×10^{-13} s. The discrepancy is due to the fact that the τ has many hadronic decay modes, in addition to the μ and e routes. In fact, the experimental branching ratios are 17.4% (μ) and 17.8% (e), for a total leptonic branching ratio of 35.2%, so $\tau=(0.352)\tau(\text{leptons})=(0.352)(8.16\times 10^{-13}~\text{s})=2.87\times 10^{-13}~\text{s}$, which is quite close to the experimental result.

Problem 2: Kaon Decay

Calculate the ratio of the decay rates $K^- \to e^- + \bar{\nu}_e$ and $K^- \to \mu^- + \bar{\nu}_\mu$. Compare the observed branching ratios.

• We can follow the discussion of the pion decay and replace the pion mass with the kaon mass.

$$\begin{split} &\frac{\Gamma(K^- \longrightarrow e^- + \bar{\nu}_e)}{\Gamma(K^- \longrightarrow \mu^- + \bar{\nu}_\mu)} = \frac{m_e^2 (m_K^2 - m_e^2)^2}{m_\mu^2 (m_K^2 - m_\mu^2)^2} \\ &= \left[\frac{(0.510999)\{(493.667)^2 - (0.510999)^2\}}{(105.6584)\{(493.667)^2 - (105.6584)^2\}}\right]^2 = \boxed{2.57 \times 10^{-5}} \end{split}$$

The experimental ratio (using data from the Particle Physics Booklet) is

$$\frac{1.55 \times 10^{-5}}{0.6344} = \boxed{2.44 \times 10^{-5}}.$$

The agreement is quite good.

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.