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KLUTE:

Welcome back to 8.701. So again, we have now all tools in place to do a next round of cross-section calculations.
We have seen how to set up a matrix element. We have seen how to build spin average or to treat the spin, and
then specifically to calculate spin average amplitudes using [INAUDIBLE].

All right, I'm not saying that this is all easy now, but you have seen all necessarily elements to calculate a cross-
section for QED process. So let's summarize.

So we have seen that we can set up some matrix element using Feynman rules for QED. We have seen how to
set up the spin average matrix element squared using the traces.

Now we would have to evaluate the traces in order to derive this formula here. So I'll spare you a precise
discussion of this step here, but you can actually follow this quite straightforwardly.

Let me just step back a little bit before we proceed. My goal for the class is not to have you calculate all kinds of
cross-section processes, but to understand how you would do it, for the purpose of really understanding where
dependencies come from and where this kind of calculation has its limitations.

The first part is you want to see what is the dependencies on the couplings involved. You see this g squared, for
example. That's a rather important effect. You also want to see, so Fermi's this golden rule, how we get actually
into the cross-section from the matrix element calculation.

So if you ever had to calculate a matrix element, am I going to ask you to do this once, maybe twice, as part of
the homework set. I encourage you to open the book, follow the rules, look up tricks, how to work with traces.
And then you should get to a reasonable solution in a reasonable amount of time. But here for the purpose of this
discussion, we want to just have a look at a few specific cases where we make assumptions and simplifications to
the discussion.

So the first one is called Mott scattering. So here, again, we are at this example of a spin-half particle scattering
with a spin-half particle-- a different spin-half particle, so an exchange of a photon. So we used the example of an
electron-muon scattering, but this muon here could also be a proton or any other nuclei we spin off.

The assumption for Mott scattering we are using is that the mass of this particle, the muon, is much heavier than
the mass of the electron. And that's true the muon 200 times heavier than an electron. A proton is even heavier.
Any heavier nuclei of this feels even heavier than this.

In Mott scattering, we also make the assumption that the momenta involved are lower than the mass of the
heavy particle and that the recoil of the heavy nuclei, or the muon, can be neglected. If we do that, we can then
write the differential cross-section using Fermi's golden rule as a spin average matrix element squared divided by
2 pi M squared.

OK. If you then use this kinematic information, you basically start from this matrix element here. And then you
use those vectors, those four vectors, for your momentum of the first, second, third, and fourth particle. You find
that many of the vectors are simplifying to ME. So p2 times p3 is ME. And so are many of the others.

And there is a few important factors. For example, p1 minus p3 squared is minus 4p squared sine squared theta
half. And similarly, p1 times p3.



So you put this all in-- again, starting from this very formula we just had discussed before-- and you put all the
simplifications and you get this matrix element, which already that looks much more manageable. There's an M
squared, there's a p squared, there's a cosine squared theta half term, and some factor which depends on the
moment times the mass.

And if you then add this to Fermi's golden rule, you find this equation for your Mott scattering. Again, this is the
scattering of two different spin-half particles where one is much heavier. The outgoing momenta are small. And
the recoil of the heavier particles can be neglected.

So this Mott's formula describes, for example, the Coulomb scattering, so the scattering this photon on the
electric charge of a nuclei. And the scattering particle is not too heavy and not too energetic, like an electron.

We also assume that everything involved here is point-like. We haven't had any discussion on the charge
distribution of the nuclei or anything. We assume that this is a point-like particle.

OK, we can further discuss now the case where the initial state particles are non-relativistic. So here our
momentum formulas simplify. This is simply M squared, p amplitudes is 2ME. And alpha is q1 times q2. Those are
the electric charges.

And so then our differential cross-section further simplifies to something you've already seen. The Lorentzian
cross-section is equal to q1 times q2 divided by 4 times the energy sine squared theta half squared. And we have
seen that as already the Rutherford scattering cross-section when we discussed cross-section measurements in a
geometrical kind of thing. So this closes a loop here in our cross-section discussion how we can think about those
things.

The Rutherford cross-section is nothing else but a big billiard ball being hit by a small billiard ball and looking at
how the cross-section differentially kind of evolves out this setup.

All right, in this sequence we have a little bit more of a discussion. What happens now if we induce higher-order
terms and how can we think about those solutions? And then have two extra lectures and where we go back and
discuss spin, and also how we can actually understand this in a Lagrangian setup.


