Massachusetts Institute of Technology

Department of Physics

Course: 8.701 – Introduction to Nuclear and Particle Physics

Term: Fall 2020

Instructor: Markus Klute

TA: Tianyu Justin Yang

Discussion Problems

from recitation on October 22th, 2020

Problem 1: Unitarity

Show that the CKM matrix is unitary for any real number θ_{12} , θ_{23} , θ_{13} , and δ , i.e. show that $(VV^{\dagger})_{11} = 1$ and $(VV^{\dagger})_{12} = 0$ and so on.

$$VV^{\dagger} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$\times \begin{pmatrix} c_{12}c_{13} & -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{-i\delta} & s_{12}s_{23} - c_{12}c_{23}s_{13}e^{-i\delta} \\ s_{12}c_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{-i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{-i\delta} \\ s_{12}e^{i\delta} & s_{23}c_{13} & c_{23}c_{13} \end{pmatrix}$$

Problem 2: CKM Parameter

Show that as long as the CKM matrix is unitary, the GIM mechanism for eliminating $K^0 \to \mu^+\mu^-$ works for three generations or any number of generations. Note: $u \to d + W^+$ carries a CKM factor V_{ud} and $d \to u + W^-$ carries a factor V_{ud}^*

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.