Massachusetts Institute of Technology Department of Physics

Course:	8.701 – Introduction to Nuclear and Particle Physics
Term:	Fall 2020
Instructor:	Markus Klute
TA :	Tianyu Justin Yang

Discussion Problems

from recitation on September 15th, 2020

Problem 1: Triangle Group

Consider symmetries of the equilateral triangle, see Fig. 1. It is carried into itself by a clockwise rotation through 120 (R_+) , and by a counterclockwise rotation through 120 (R_-) , by flipping it about the vertical axis a (R_a) and axis b (R_b) and c (R_c) . Construct a multiplication table for the triangle group, filling the blanks in Tab. 2. In row i, column j put the product R_iR_j . Is this an Abelian group? How can you tell, just by looking at the table?

Figure 1: Equilateral triangle.

	Ι	R+	R_	Ro	Rb	Rc
Ι						
R_+						
R_				_		
Ra						-
Rb						
Rc		1			0-0-0	

Figure 2: Multiplication table for triangle group.

Problem 2: Isosping - dynamic implications

Consider three nucleon-nucleon scattering processes

(a)
$$p + p \rightarrow d + \pi^+$$

(b) $p + n \rightarrow d + \pi^0$
(c) $n + n \rightarrow d + \pi^-$

Figure 3: Nucleon-nucleon scattering processes.

The deuteron has isospin I=0 and the pion I=1. Isospin is conserved in the scattering process. Cross-sections go like the absolute square of the amplitude. What is the ratio of cross sections, $\sigma_a : \sigma_b : \sigma_c$?

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.