8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

- 1. Fermions, bosons, and fields
- 1.3 Ranges of Forces

1

Ranges of Forces

Force	Name	Symbol	Number	EM charge
Strong	Gluons	g	8	0
EM	${ m Photon}$	γ	1	0
Weak	W and Z	W^\pm,Z^0	3	$\pm 1, 0$

Electromagnetic potential due to point charge as solution Maxwell's eq.

$$\phi = \frac{Q}{4\pi\epsilon_0 r} \qquad \qquad \nabla^2 \phi = -\frac{\rho}{\epsilon_0}$$

Massless photon has infinite range.

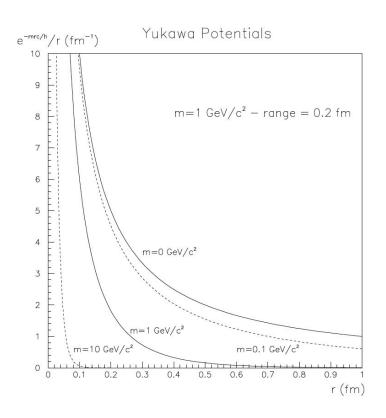
How would this be modified if the photon were massive?

Ranges of Forces

Generalize by a) using the time-dependent Maxwell equation

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = 0$$

and b) adding a mass term.


$$E^2=p^2c^2+m^2c^4$$
 with $\hat{E}=i\hbar\partial/\partial t$ and $\hat{m p}=-i\hbarm
abla$ $-\hbar^2rac{\partial^2\phi}{\partial t^2}=-\hbar^2c^2
abla^2\phi+m^2c^4\phi$

$$\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi + \frac{m^2 c^2}{\hbar^2} \phi = 0$$

Ranges of Forces

$$\phi = \frac{Q}{4\pi\epsilon_0 r} e^{-m_\gamma cr/\hbar}$$

	Gravitational	Electromagnetic	Weak	Strong
field boson spin-parity mass, GeV	graviton 2+ 0	photon 1 ⁻ 0	W^{\pm}, Z $1^{-}, 1^{+}$ $M_{W} = 80.2$ $M_{Z} = 91.2$	gluon 1 ⁻ 0
range, m source	∞ mass	∞ electric charge	10 ⁻¹⁸ 'weak charge'	≤ 10 ⁻¹⁵ 'colour charge'
coupling constant	$\frac{G_N M^2}{4\pi \hbar c}$ $= 5 \times 10^{-40}$	$\alpha = \frac{e^2}{4\pi \hbar c}$ $= \frac{1}{137}$	$\frac{G(Mc^2)^2}{(\hbar c)^3}$ = 1.17 × 10 ⁻⁵	$\alpha_s \leq 1$

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.