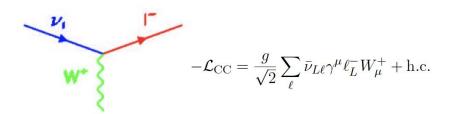
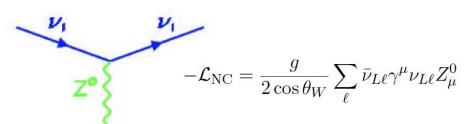
8.701

Introduction to Nuclear and Particle Physics

Markus Klute - MIT

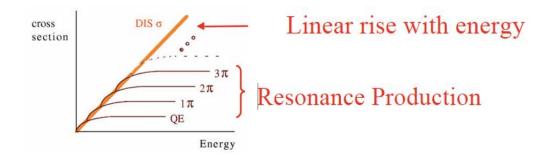

- 8. Neutrinos
- 8.1 In the Standard Model


1

Neutrinos in the Standard Model

Neutrinos Massless

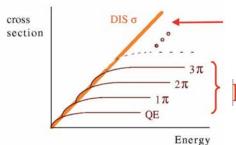
Interacts with W and Z bosons


Have three flavors (electron, muon, and tau)

Neutrinos are left-handed (Anti-neutrinos are right-handed)

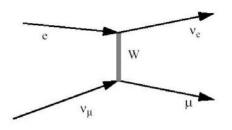
Neutrino-Nucleon Processes

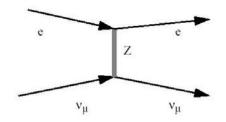
- Charged Current: W[±] exchange
 - Quasi-elastic Scattering:
 (Target changes but no break up)
 v_u + n → μ⁻ + p
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0} \quad (N^{*} \text{ or } \Delta)$ $n + \pi^{+}$
 - Deep-Inelastic Scattering:
 (Nucleon broken up)
 v_u + quark → μ⁻ + quark'


- Neutral Current: Z⁰ exchange
 - Elastic Scattering:
 (Target doesn't break up or change)
 v_u + N → v_u + N
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi \quad (N^* \text{ or } \Delta)$
 - Deep-Inelastic Scattering (Nucleon broken up)
 ν_u + quark → ν_u + quark

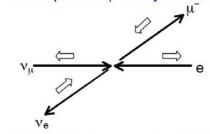
Neutrino-Nucleon Scattering

- Charged Current: W[±] exchange
 - Quasi-elastic Scattering: (Target changes but no break up)
 v_u + n → μ⁻ + p
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0} \quad (N^{*} \text{ or } \Delta)$ $n + \pi^{+}$
 - Deep-Inelastic Scattering:
 (Nucleon broken up)
 v_" + quark → μ⁻ + quark'


- Neutral Current: Z⁰ exchange
 - Elastic Scattering:
 (Target doesn't break up or change)
 v_u + N → v_u + N
 - Nuclear Resonance Production: (Target goes to excited state) ν_μ + N → ν_μ + N + π (N* or Δ)
 - Deep-Inelastic Scattering (Nucleon broken up)
 ν_u + quark → ν_u + quark



Linear rise with energy


Resonance Production

Neutrino-Electron Scattering

Inverse μ-decay: v_μ + e⁻ → μ⁻ + v_e
 Total spin J=0 (Helicity conserved)

- Point scattering ⇒ σ ∝ s = 2m_eE_ν

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} = 17.2 \pm 10^{-42} \, cm^2 \, / \, GeV \cdot E_v \, (GeV)$$

- Elastic Scattering: v_μ + e⁻ → v_μ + e⁻
 Point scattering ⇒ σ α s = 2m_eE_v
 - Electron coupling to Z⁰
 - (V-A): $-1/2 + \sin^2\theta_W$ J = 0
 - $(V+A): \sin^2\theta_W \qquad J = 1$

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \frac{4}{3} \sin^4 \theta_W \right)$$

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.