Massachusetts Institute of Technology Department of Physics

Course: $\quad 8.701$ - Introduction to Nuclear and Particle Physics
Term: Fall 2020
Instructor: Markus Klute
TA : Tianyu Justin Yang

Discussion Problems

from recitation on September 29th, 2020

Problem 1: γ-matrices

By considering the three cases $\mu=\nu=0, \mu=\nu \neq 0$, and $\mu \neq \nu$ show that $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$.

Problem 2: Negative energy solutions

Consider the $e^{+} e-\rightarrow \gamma \rightarrow e^{+} e-$ annihilation process in the center-of-mass frame where the energy of the photon is $2 E$. Discuss energy and charge conservation for the two cases where:
(a) the negative energy solutions of the Dirac equation are interpreted as negative energy particles propagating backwards in time;
(b) the negative energy solutions of the Dirac equation are interpreted as positive energy antiparticles propagating forwards in time.

MIT OpenCourseWare
https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

