Massachusetts Institute of Technology

Department of Physics

Course: 8.701 – Introduction to Nuclear and Particle Physics

Term: Fall 2020

Instructor: Markus Klute

TA: Tianyu Justin Yang

Discussion Problems

from recitation on September 29th, 2020

Problem 1: γ -matrices

By considering the three cases $\mu = \nu = 0$, $\mu = \nu \neq 0$, and $\mu \neq \nu$ show that $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$.

Problem 2: Negative energy solutions

Consider the $e^+e^- \to \gamma \to e^+e^-$ annihilation process in the center-of-mass frame where the energy of the photon is 2E. Discuss energy and charge conservation for the two cases where:

- (a) the negative energy solutions of the Dirac equation are interpreted as negative energy particles propagating backwards in time;
- (b) the negative energy solutions of the Dirac equation are interpreted as positive energy antiparticles propagating forwards in time.

MIT OpenCourseWare https://ocw.mit.edu

8.701 Introduction to Nuclear and Particle Physics Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.