
Physics 8.821: Problem Set 1 Solutions 

1. Matrix element identities in the proof of Weinberg-Witten Theorem 

Here we seek to establish various identities related to states in a relativistic quantum field the­
ory. We are considering single-particle states |k, σ) with k = kµ = (k0,kk) the four-momentum 
and σ an internal quantum number of the particle. The states are normalized as 

(k, σ|k , σ ) = δσ,σ δ(3)(kk − kk ) . (1) 

These states have charge q under a U(1) current Jµ. 

We tackle the current problem first. By the definition of charge, we have  
Q|k , σ ) = d3x J0(kx)|k , σ ) = q|k , σ ) . (2) 

iPP ·P −iPP ·PxNote we can write J0(kx) = e xJ0(0)e where here P represents the momentum operator. 
Hitting this with (k, σ| and using the fact that J0(kx) is sandwiched between two momentum 
eigenstates we find  

iPx·(Pk− Pd3 x e k )(k, σ|J0(0)|k , σ ) = qδσ,σ δ(3)(kk − kk ) . (3) 

The integral over x on the left-hand side gives us a (2π)3δ(3)(kk − kk ), and we conclude that 

q
lim (k, σ|J0|k , σ ) = δσ,σ (4) 
k→k (2π)3 

The limit k → k is necessary as the fact that everything is multiplied by a delta function 
means that the equations vanish identically away from k → k , giving us no information. 

We are not done yet. We now seek to figure out the action of the whole current Jµ, where 
µ can be any index. We will do this by studying the Lorentz transformation properties of 
various quantities in this expression. First, recall from [1] that given a Lorentz transformation 
Λ, it is represented on the Hilbert space by a unitary operator U(Λ), whose action on a state 
|k, σ) is written    

U(Λ)|k, σ) = D¯ σ), N(k) 
σσ(Λ)|Λk, ¯ (5)

N(Λk)
σ̄

where Dσ̄σ(Λ) is a set of numbers, forming a representation of the little group that will not 
much concern us. N(k) is however an important normalization, and it is shown in (2.5.18) of 
[1] that it is given by  

0r
N(k) = , (6)

k0 

where rµ is a “reference four-vector” whose exact details will again not concern us. Now take 
some Λ and consider the expression 

lim (k, σ|U †(Λ)J0U(Λ)|k , σ ) (7) 
k→k 

1
 



and we are trying to understand the statement that apparently this theory does not have a 
“Lorentz-covariant conserved four-vector current corresponding to the U(1) symmetry”, where 
the U(1) is the subgroup of SU(2) generated by σ3 . 

Let us begin by constructing the conserved currents. We will use the normal Noether proce­
dure, which we recall briefly: note that the existence of a conserved current is actually related 
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Via the Lorentz transformation of Jµ, this is equal to

lim 〈k, σ|Λ0 Jµµ |k′, σ′
k→k′

〉 . (8)

On the other hand, we can also act with the U ’s on the states, finding

lim
k→k′

√
Λ0

ρk
ρΛ0

µ
k′µ∑

, ¯ J0D
0 ′ σ̄0

〈Λk σ|Dσ̄σ(Λ)† ′σ′(Λ) Λk′, σ̄′ . (9)
k k

| 〉
σ̄′σ̄

Now the D′s are just numbers that can be freely moved through the J0, and we find after
using (4), remembering that D’s should be unitary, and equating the result to (8):

Λ0 ρ

lim
k→k′
〈k, σ|Λ0 ρ

ρJ |k′, σ 〉
ρk′ =
k0

q
δσ,σ3

′ (10)
(2π)

As this must hold for all Lorentz transformations Λ we realize that the only way it can be
true is if

q
lim
k→k′
〈k, σ|Jρ|k′, σ′〉 =

(2π)3

kρ
δσ,σ ,0

′ (11)
k

which is indeed the desired result.

As the corresponding calculation for Tµν is basically exactly the same with an extra index I
will be brief and just state the analogs∫ of various equations for the U(1) case. The analog of
charge is now total momentum Pµ = d3x T 0µ. (4) becomes

1
lim
k→k′
〈k, σ|T 0ν |k′, σ′〉 = δσ,σ k

µ

π)3
′ (12)

(2

Arguments identical to those above lead us to the analog of (10)

µΛ Λ0 kρkα〈 ρ
lim k, σ|ΛµρΛ0

αT
ρα

→k
|k′, σ′〉 = α

k ′
δσ,σ

(2π)3k0
′ , (13)

which again leads us to conclude that

µν 1
lim k
→k′
〈 , σ|T

k
|k′, σ′〉 =

(2π)3

kµkν
δσ,σ0

′ . (14)
k

2. SU(2) Yang-Mills theory as a U(1) theory

We are studying an SU(2) gauge theory with the normal action

1
S = −

∫
d4x

4g2
F aµνF

µνa, (15)



 

to the existence of a global symmetry, i.e. given an action that is invariant under a global 
transformation 

δΦ = ET Φ (16) 

where T is a generator of some sort, one promotes this global transformation to a spacetime­
dependent one 

δΦ = E(x)T Φ, (17) 

and then finds that due to the spatial dependence of the transformation the action is not s 
invariant, i.e. δS = d4xjµ∂µE. One then reads off jµ and concludes that it is conserved 
on-shell, as on-shell even this variation must vanish (since indeed all variations vanish). 

We now apply this in our context; the global gauge rotations take the form 

= fabcAb ΛcδAa
µ µ , (18) 

where Λc is a constant gauge parameter and fabc are the structure constants of the group. 
We now promote this to a spacetime-dependent transformation 

= fabcAbδAa
µ Λc(x) . (19)µ

Note that we are not performing a local gauge transformation – while it might look similar, 
that is something philosophically different, involving an extra ∂µΛa term. If we performed a 
local gauge transformation we would of course find that the action is completely invariant. 
But then of course the Noether procedure would fail. We are doing something simpler – all 
we are doing is finding the conserved current associated with the global subgroup of the gauge 
symmetry, and we are following the standard algorithm to do it. 

We now compute the variation of the action under this transformation, which turns out to be 

fabcAbδS = − 
1 

d4xF µν 
ν ∂µΛ

c (20)
2 a g

This is quite straightforward, as the only terms we are interested in are those which are 
proportional to ∂µΛc, since we know all the rest vanish anyway. Thus we read off the current 
(for a general non-Abelian theory) as 

= F µν fabcAbjµ ν , (21)c a 

where I have dropped some overall factors since they won’t concern us. By construction, this 
current must be conserved. Now for the purposes of the problem set we specialize to SU(2), 

Eabcfor which we have fabc = and we fix c = 3 in the current (21). It is convenient to work 
with the linear combinations   

B± = √ 
1 

A1 ± iA2 (22)µ µ µ
2

and the similarly defined F ± (21) in this case then becomes µν .   
jµ µν B− µν B+ = i F − F , (23)3 + ν − ν

where F ± 
µν is 

F ± = DµB
± − Dν B

± , (24)µν ν µ 
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and where the covariant derivative Dµ of B± that is used in this formula reflects the fact that ν 
the fields defined as (22) are charged under the U(1) generated by A3, i.e. 

DµBν 
± ≡ ∂µ ± iA3 

µ Bν 
± (25) 

All of this is repackaging of the expression (21). 

Now we turn to the real problem; the expression (21) or the SU(2) specialization (23) are 
conserved by construction – but are they Lorentz-invariant? The real answer is no, and it is 
because massless vector fields transform strangely under Lorentz transformations. If you are 
not familiar with this it may be a surprise, and I refer you to [1] Section 5.9 for an authoritative 
(or [3] for a more informal) discussion. The key fact is that under the unitary operator 
U(Λ) representing a Lorentz transformation Λ the local quantum operator corresponding to 
a massless vector field Bµ transforms as 

U(Λ)Bµ(x)U
†(Λ) = Λν Bν (Λx) + ∂µΩ(x, Λ) (26)µ

There is an extra inhomogenous piece proportional to the gradient of a scalar function Ω(x, Λ)
 
which depends on the parameters of the Lorentz transformation.
 

We now pause to describe how something like this can be. The representation theory of
 
quantum fields tells us that the possible states of a particle are governed by representations
 
of the “little group”, the set of Lorentz transformations that leaves a reference momentum kµ
 

(which is lightlike in the massless vector case) invariant. For a massless vector we expect the
 
little group to contain an SO(2) rotation subgroup around the spatial momentum direction;
 
the polarization Eν with definite eigenvalues under this rotation form the two helicities, which
 
is all we should have for a massless vector, i.e. parametrizing the rotation by θ:
 

(DSO(2)(θ)E±(k))
ν = exp(±iθ)Eν (27)±(k) 

However it turns out that the little group is larger than this Abelian group; it also contains 
an awkward non-compact factor, and when acting on the states of definite helicity it generally 
brings in an admixture of a longitudinal polarization, i.e. 

(Dfull(c)E±(k))
ν = Eν kµ 

(28)±(k) + c 
|kk| 

This is the term proportional to ∂µΩ seen above. 

This suggests that in some fundamental sense massless vector fields have some problem with 
quantum mechanics. There is one way to save this and recover Lorentz-invariance – let us 
demand that all couplings of the vector field Bµ are invariant under the shift Bµ → Bµ + 
∂µΩ. In that case this anomalous Lorentz transformation will not manifest itself in physical 
amplitudes; we recognize this now as the statement that “massless vector fields have gauge 
invariant actions, etc.” 

We now return to our current (21). The key point is that it depends explicitly on the massless 
gauge field Aa

µ in a non-gauge-invariant way and so is not invariant under the weird transfor­
mation (26), and so does not actually form a Lorentz-covariant four-vector. If we could have 
written down a gauge-invariant conserved current it would indeed be a good four-vector; I 
don’t know of a way to prove that this is impossible but leave it to you to convince yourself 
of it. 

4
 

( )



    

  

  

  

  

3. Falling into a black hole! 

This is a standard calculation from general relativity courses and I recommend [2], Section 
5.6 for more discussion. 

Recall that the metric is 

2M dr2 

ds2 = − 1 − dt2 + + r 2dΩ2 (29) 
r 1 − 2M 

r 

We can restore the GN by taking M → MGN . 

(a) We will use an overdot to represent differentiation with respect to proper time τ , i.e. 
d· ≡ To solve the geodesic equation, we use the fact that the four-velocity of the dτ .
 

observer is always −1,
 

2M 1 
ṫ2 2− 1 − + ṙ = −1, (30) 

r 1 − 2M 
r 

and the fact that the existence of the time translation Killing vector means that there is 
a quantity E conserved along the geodesic, 

1 − 
2M

ṫ = E . (31) 
r 

These two equations let us reduce the problem to just the radial motion, 

2 ṙ + 1 − 
2M 

= E2 . (32) 
r 

This equation can actually be integrated explicitly but we will not do this. Instead let us 
look at the incremental change in proper time dτ for a small change in radius dr; from 
(32) we have 

dr 
dτ = - (33) 

E2 − 1 − 2M 
r 

Near the horizon at r = 2M (which is the only point where anything strange could 
happen) we see that 

dr 
dτ = (r → 2M) (34)

E 
which is perfectly well-behaved and regular; thus we can presumably move all the way 
through up to r = 2M in finite proper time. The same result can be reached from a 
direct integration of (32). 

On the other hand, combining (31) with (34) we find 

1 
dt = dr (r → 2M), (35)

1 − 2M 
r 

Upon integration we see that the change in t is logarithmically divergent as we approach 
r → 2M ; thus the observer takes infinite coordinate time t to reach the horizon. 
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(b) The easiest way to see this is to convert to Eddington-Finkelstein coordinates, given by 

r
=

  
v  t + r  r 1 . (36)∗ ∗ = r + 2M log   

2M 
−

se coordinates the metric is 

 

2  − 

 (
2M 

 − 

 )
2    2 2 ds = 1 dv + 2dvdr + r dΩ . (37) 

r 

here it is immediately clear that the line v = const is a null trajectory; as r∗ is 

In the

From 
a monotonically increasing function of r it is an infalling null trajectory. To find the 
equation for the outgoing trajectory we set ds2 = 0 to find  

dv 0 infalling 
= (38)−1dr 2 1 − 2M outgoingr 

Note what is happening; the infalling geodesic is always a line of constant v, but the 
outgoing trajectory is changing radial direction as we cross r = 2M . For r < 2M we see 
that dr < 0 for all light rays. Thus light rays that move forwards in time (i.e. increasing dv 
v) necessarily move inwards in radial coordinate. Thus there is no way for our infalling 
observer to send a message outside the black hole once he crosses r = 2M , but he can 
still receive ingoing messages. 

(c) It is clear from the discussion above that if our hapless observer stays within the light 
cone, once he crosses the horizon he will always be moving to smaller and smaller r, and 
thus must eventually hit the singularity at r = 0. We compute his proper time elapsed 
from the horizon to the singularity along the geodesic (33) 

2M dr 
Δτ = - (39) 

0 E2 − 1 − 2M 
r 

Now it is clear from the expression that this integral will be maximized when E = 0; 
physically this can be seen by demanding that the observer is at rest ṙ = 0 at the horizon 
and using (30) together with (31). To find the maximal proper time we should thus set 

rE = 0. By defining a dimensionless variable x ≡ we can then scale out all factors of 2M 
2M to find 

1 dx 
Δτ = 2M - = Mπ (40) 

10 − 1 x 

Restoring the GN we find πGN M as claimed in the problem set. The integral can actually 
be done for any E but is a more complicated function. 

4. Black hole evaporation 

(a) The main point of this problem is to figure out how much entropy is carried away by 
the radiation. We do this first through macrosopic thermodynamic arguments. Let us 
begin by quickly deriving the relevant equations of state for massless particles. As they 
are scale invariant, it seems that their energy density E at a temperature T must be 

E = cT 4 (41) 
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with c some dimensionless constant. Now we want to find the entropy density; from the 
first law of thermodynamics dE = T ds we can now compute the entropy density to be 

4 E 
s = . (42)

3 T 

us turn to our problem. We have a black hole with mass M and a Hawking Now let 
temperature TH . Imagine standing a little bit away from the black hole so that we do 
not get into any confusion about curvature, etc. Let the black hole radiate away some 
energy dE. By the assumption that the radiation is perfect blackbody we find that from 
(42) that the entropy dSrad carried away in the radiation is 

4 dE 
dSrad = (43)

3 TH 

(If this bothers you imagine considering a shell of radiation with some energy at some 
temperature, etc. etc. Note that (43) is not any version of any law of thermodynamics; 
rather it is the entropy carried by a volume of radiation with total energy dE.) 

On the other hand, the black hole has lost energy dE. Now by explicit gravity calculation 
we know from the first law of black hole mechanics that the black hole loses entropy 

dE 
dSBH = (44)

TH 

No assumption about any sort of equilibrium has been made here; this is a fact about 
black holes (although it does lead you to believe that through this process the black hole 
remains in thermal equilibrium). We then conclude that 

dE 4 
dSrad − dSBH = − 1 > 0 (45)

TH 3 

We are done. Note that the number of species did not play a role in this argument. 

We now present a more microscopic derivation of this fact. Consider the photon modes 
outside the black hole; they may all be treated as simple harmonic oscillators with fre­

1quencies ωk = |kk| that are in thermal equilibrium at a temperature β = . Using basic TH 

quantum mechanics we may now figure out the partition function, mean energy, etc. for 
each mode. We find for each mode ω the partition function 

1 
Z = tr (exp(−βH)) = 

2 sinh βω 
2 

, (46) 

and the mean energy 
∂ ω 1 (H) = − 
∂β 

log Z = 
2 tanh βω 

2 

, (47) 

and finally the entropy 

S = log Z + β(H) = − log 1 − exp −βω + β (H) − 
ω 
2 

(48) 
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It seems reasonable to identify dE = (H) − ω as the energy carried away by the mode; 2 
note that we separate out the zero point energy, as it is always present and so cannot 
be involved in any sort of energy transfer. We then see that the entropy in this mode 
dS is always greater than dE , as the argument of the logarithm is always less than 1. TH 

Note that if we were to integrate these oscillator expressions over all k it would amount 
to deriving blackbody radiation and we should be able to recover the factor of 4 above. 3 

(b) Let us attempt to keep all the units.	 If the black hole has mass M , we have for the 
horizon radius and temperature 

32GN M	  c
rs = TH =	 (49) 

c2 8πGN MkB 

Now we assume that the black hole radiates through the blackbody Stefan-Boltzmann 
expression, i.e. the power is 

P = 
nσ 

TH 
4 ABH (50)

2 
with n the number of massless polarizations, σ is the Stefan-Boltzmann constant, σ = 
π2k4 

B 
60 3c2 , ABH is the area of the horizon, and the 2 is because the expression written down 
for σ assumes that n = 2, corresponding to physical photon states in four dimensions. 

= −dEWe now write P with E = Mc2 to find a differential equation for M ,dt 

dM α n 4 c4 

= − α =	 (51)
dt M2 2 15 · 84π2G2 

N 

Integrating this from an initial mass M0 to 0 we find that the the black hole evaporates 
in a total time given by 

M3 G2 π 102400 NT = = M3 .	 (52)
43α 0  c n 
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