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8.821 F2008 Lecture 16: Correlators of more than two operators 

Lecturer: McGreevy 

November 6, 2008 

1 Intro 

This lecture covers: 

1. 3-point functions. 

2. the relationship between the subleading term in the bulk field solution and the expectation 
value of the dual operator. 

3. bulk gauge fields. 

2 3-Point Functions 

Let’s consider a bulk gravity theory with 3 scalar fields. � � 
3

� 

Sbulk =
1 

dD+1 x
√
−g 

� 
((∂φi)2 + m 2 

i φ
2 
i ) + bφ1φ2φ32 

i=1 

The interaction term could be modified with some other couplings, e.g. φ2
1φ2 or (∂φ1)2φ2, etc... ; 

such differences will modify the details of the following calculation. We want to solve the equations 
of motion perturbatively in φ0 . This could be justified either by small b coupling or by small 

(0)boundary values φi . 
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� � 

� � 

� � 

This is just like a Feynman diagram expansion; these “Witten Diagrams” also keep track of which 
insertions are at the boundary of AdS. 

dD dDφi(z, x) = x�KΔi (z, x; x�)φ0(x�) + b x�dz�
√
−gGΔi (z, x; z�, x�) ×i 

× dD x1 dD x2K
Δj (z, x; x1)KΔk (z, x; x2)φj 

0(x1)φk
0(x2) + · · · 

The diagram with three insertions at the boundary won’t contribute to the vacuum 3-point function, 
since its contribution to the on-shell action will be at least quartic in φ0 (and the three-point function 
is obtained by acting with δ3 

on the action and setting φ0 = 0). The Δs that are running around 
δφ3 

are the weights of the primary operators for the scalar field insertions. The Gs and Ks are just 
spatial propagators for our theory. G(z, x; z�, x�) is the bulk-to-bulk propagator, defined as the 
normalizable solution to 

1
(� − m 2)GΔi (z, x; z�, x�) ≡ √

−g
δ(z − z�)δD(x − x�)i 

which is otherwise regular in the interior of AdS. The bulk-to-boundary propagator K is defined 
as: 

1 
K(z, x; x�) ≡ lim �n ∂G(z, x; z�, x�), 

z�→0 
√

γ 
· 

where 
√

γ is the boundary metric and �n is the outward pointing normal at the boundary. The 
bulk-to-bulk propagator and bulk-to-boundary propagator are related by1: 

�Δ 

KΔ(z, x; x�) = lim GΔ(z, x; z�, x�). 
z�→� 2Δ − D 

Of course, these have actual, real live expressions that can be put in terms of hypergeometric 
functions. Just in case you ever need them: 

Δ Δ + 1 Δ 1 
GΔ(z, x; z�, x�) = cΔη−ΔF1 , ; Δ + 1 − , ,

2 2 2 η2 

η = 
z2 + z�2 + (x − x�)2 

, geodesic distance in AdS,
2zz� 

2−ΔΓ(Δ) 
cΔ = .

(2Δ − D)πD/2Γ(Δ − D/2)

To compute 3-point functions, we plug φ into the on-shell action S[φ]. After an integration by 
parts, the action becomes: 

3 � � 
S[φ] = 

1 � 
dD+1x∂µ(

√
−gφi∂

µφi) − 
b

dD+1 x
√
−gφ1φ2φ3 + c.t.

2 2 
i=1 

= I + II 

The proof of this relation follows from “Green’s second identity” Z ` ´ Z 
φ(� − m 2)ψ + ((� − m 2)φ)ψ) = (φn ∂ψ + (n ∂φ)ψ) ∀φ, ψ · · 

U ∂U 

with φ = G,ψ = K. 
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� � 

� 

The first term (I) vanishes by properties of the bulk-to-bulk propagator; this is true in general for 
n ≥ 3. This is glossed over in many discussions of this calculation. We will not prove it directly, 
but it follows immediately from the result in §3 below. Anyway, the bulk term is non-zero and 
that’s what we’ll compute. � 3

II = − 
b

dDxdz
√
−g 

� � 
KΔi (z, x; xi)φ0 

i (xi) 
� 

2 
i=1 

So with this in hand we can find the 3-point function by functional differentiation using the GKPW 
formula. � R � R 

e φ0O = e− SUGRA S[φ0] 

3� δ 
= ⇒ �O1(x1)O2(x2)O3(x3)�φ0=0 δφ0(xi)

(II)|φ0=0 
i=1 i 

� 3

�O1(x1)O2(x2)O3(x3)�φ0=0 = b dDxdz
√
−g 

� 
KΔi (z, x; xi) 

i=1 

To see the structure of the 3-point function, we do some work on this integral. First, let’s relabel 
the coordinates. Let wA = (z, �x), so w0 = z and w� = �x. We’ll also define (w − �x)2 ≡ w0

2 +( w� − �x)2 . 
In this case, x0 ≡ 0. With these new coordinate labels, the bulk-to-boundary propagator becomes: � �Δ 

KΔ(w) = 
w0 

.x (w − �x)2 

wa
� 2

Now we do a change of variables, inversion. Let wA = 
w�2 , where w�2 = w0

�2 + w� � . Now we make 
two claims: 

1. dD+1w −g(w) = dD+1w� −g(w�), since inversion is an isometry of AdS. 

2. Kx(w) = |x�|2ΔKx� (w�). This is how we found K. 

From these, we can find the transformation of the 3-point correlator. 

3

Gfrom II 2ΔGfrom II ⇒ 3 (xi) = |x�i| 3 (x�i) 
i=1 

Some more claims: 

3 



3 

1. This is the correct transformation of a CFT 3-point function under inversion (large conformal 
transformation), denoted I. 

2. Translation invariance is clear Tb : x
µ
i → xµ

i + bµ. We simply redefine the integration variable 
w̃µ = wµ − bµ to remove the bµ dependence. 

3. Special conformal invariance = ITbI, so that’s good. 

4. This must be of the required form, since rotational invariance is clear. 

G3 = � 
cijk 

(xi)Δij
i>j 

This is determined up to cijk. To find cijk, need to do integral. See [DZF]. Translate �x3 to 0. 
Then only two denominator factors in G(xi), and use Feynman parameters. 

n-point functions proceed quite similarly. The only new complication is that in general one must 
evaluate some Witten diagrams with both bulk-to-boundary and bulk-to-bulk propagators (which 
don’t go away). 

Expectation Values 

Next we make a valuable observation about expectation values & the classical field. The reference 
is Klebanov-Witten, hep-th/9905104. 

The solution in response to a source φ0 at the boundary (in some state) is: 

φ[φ0](z, x)] lim �Δ− 
� 
φ0(x) + O(�2) 

� 
+ �Δ+ 

� 
A(x) + O(�2) 

� 
→ 

z �→

In this case φ0 is the source. The function A(x) is a normalizable fluctuation, determined by the 
source and choice of the propagator (not just to linear order in φ0). CAREFUL: The term O(�2) 
in the first term can be larger than the A(x) in the second term! Use caution when calculating and 
expanding! 

The claim is that: 

A(x) = 
2Δ

1 
− D 

�O(x)�φ0 = 
2Δ

1 
− D 

�O(x)e 
R 

φ0O�CFT 
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Knowing the one-point function 

�O(x)�φ0 = 
� 

φ0�OO� + 
1 
2 

� 
φ0φ0�OOO� + · · · 

allows us to compute all other correlators. So this formula circumvents the need for the on-shell 
action S[φ], and applies not just in the Euclidean case, but also in the real-time case. We’ll give a 
diagrammatic “proof”. 

The value of the bulk field in response to some source can be represented perturbatively by the 
following collection of diagrams: 

φ(z, x) = 
� 

dz�dD x�GΔ(z�, x�; z, x)BLOB(z�, x�) 

So we bring all our sources at the boundary into some blob, then connect the blob to our field using 
the bulk-to-bulk propagator at (z�, x�). On the other hand, by the GKPW formula, the expectation 
value of the dual operator takes the form: 

GKPW O(x)�φ0 = = dz�dD x�KΔ(z�, x�; x)BLOB(z�, x�) 

Now we use our fact about the relation between the bulk-to-bulk and bulk-to-boundary propagators. 

�Δ 

GΔ(z, x; z�, x�) lim KΔ(z, x; x�)→ 
z�→� 2Δ − D 

Putting this in, we find the relation 

�Δ 

z
lim 

� 
φ(z, x) = dz�dD x� 

2Δ − D
KΔ(z�, x�; x)BLOB(z�, x�) 

→

�Δ 

= 
2Δ − D 

�O(x)�φ0 

To really work, we need the functional derivatives to be away from the support of the sources, e.g. 
take the φ0 

i to be δ-functions. But given that, this shows our claim. 
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4 Gauge Fields 

This last bit is the beginning of the discussion on bulk, massive gauge fields. Consider a CFT with 
a conserved current Ja

µ, e.g. for N = 4 SYM there is a U(1) ⊂ SO(6). This leads to massless gauge 
fields in AdS. Things coupling to conserved currents are massless. See pset #4. We can imagine a 
term at the boundary of the form 

S Aa Jµ.µ a� 
∂(AdS) 

∂µJa
µ = 0 Δ = D − 1 mA 

2 = 0 ⇒ ⇒ ⇒ 

This allows us a nice check on the 2-point function of (charged) scalar operators (due to Freedman 
et al hep-th/9804058) as follows. 

If under the U(1) the scalar operators transform like: 

=δΛO iΛO, 

and δΛO∗ = −iΛO∗, 

then the 3-point function 

Δ 123�OΔ(x1)O∗ (x2)Jµ(x3)� ≡ Gµ 

is related by a Ward Identity to the 2-point function 

Δ(x2)� .�OΔ(x1)O∗ 

The Ward Identity for a conserved current is: 

0 = δΛ [Dfields]e−S OΔ(x1)O∗ (x2) .Δ

The change in the action is: � 
δΛS = ∂µJµ(x)Λ(x). 

Putting this all in the Ward Identity will give us something interesting. Let’s define xij ≡ xi − xj , 
as it will come in handy. ��� � � 

⇒ 0 = − dD x3∂µJµ(x3)Λ(x3) OΔ(x1)O∗ (x2)Δ

+ �(iΛ(x1)OΔ(x1)) O∗ (x2)� + �OΔ(x1) (−iΛ(x2)O∗ (x2))�Δ Δ

This is true for a general Λ(x), and in particular Λ(x) = δD(x − x3). 

∂ 
Δ(x2)Jµ(x3)� = i(δ(x13) − δ(x23)) �OΔ(x1)O∗ (x2)�Δ⇒ 

∂x3 
�OΔ(x1)O∗ 

For a CFT, the form of a two scalar and one vector 3-point correlator is constrained to be of the 
form: 

1 xµ xµ 1
(x2)Jµ(x3)� = c 13 23 ≡ cSµ(x1, x2, x3).Δ�OΔ(x1)O∗ 2Δ−D+2 x2 − 

x2 D−2 D−2 x12 13 23 x13 x23 
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Here, c is some constant that needs to be calculated. This gives as the divergence:


∂ 2πD/2 1 
Δ 2⇒ 

∂x3 
�OΔ(x1)O∗ (x2)Jµ(x3)� = i(δ(x13) − δ(x23))cΓ(D/2) (x12)Δ 

On the gravity side of things, we just need to include a new bulk vector field, and have a complex 
scalar minimally coupled to our gauge field. 

dD+1 2 2Sbulk = x
√
−g −

4
1 
FAB F AB + 

η 
2 
g AB (∂A + iAA)φ∗(∂B − iAB )φ + m |φ|

This is the usual charged scalar field theory with our vertex now dependent on the metric, rather 
than the usual flat case we’re used to. 

The three-point function of interest gets a contribution from a single Witten diagram:


⎡ ⎤ � ←→� � dDwdw0 ∂ OΔ(x1)O∗ (x2)JM (x3) = −i
w0 

D+1 g AB(w) ⎣KΔ(w, x1)
∂wB K

Δ(w, x2)⎦ KA
M (w, x3)Δ

The KΔ(w, x)s inside the parentheses are the usual scalar bulk-to-boundary propagators, while the 
KA

µ outside is the bulk-to-boundary propagator for the gauge boson. 

KA
M (w, �x) = cD (w − 

w

�x
0 
D

)

−

2(

1 

D−1) 
JA

M (w − �x) 

M 

JM (x) ≡ δM xA

x

x
A A − 2

2 

x�
2 ∂xA x�A 

= with x A = 
∂xM 

� x2 

This JA
M is the Jacobian for the inversion transformation. This propagator solves the bulk Maxwell 

equations and → δD(w� − �x) as w0 → 0. 

[to be continued] 
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