MIT OpenCourseWare
http://ocw.mit.edu

8.821 String Theory

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.821 F2008 Lecture 16: Correlators of more than two operators

Lecturer: McGreevy

November 6, 2008

1 Intro

This lecture covers:

1. 3 -point functions.
2. the relationship between the subleading term in the bulk field solution and the expectation value of the dual operator.
3. bulk gauge fields.

2 3-Point Functions

Let's consider a bulk gravity theory with 3 scalar fields.

$$
S_{\text {bulk }}=\frac{1}{2} \int d^{D+1} x \sqrt{-g}\left[\sum_{i=1}^{3}\left(\left(\partial \phi_{i}\right)^{2}+m_{i}^{2} \phi_{i}^{2}\right)+b \phi_{1} \phi_{2} \phi_{3}\right]
$$

The interaction term could be modified with some other couplings, e.g. $\phi_{1}^{2} \phi_{2}$ or $\left(\partial \phi_{1}\right)^{2} \phi_{2}$, etc... ; such differences will modify the details of the following calculation. We want to solve the equations of motion perturbatively in ϕ^{0}. This could be justified either by small b coupling or by small boundary values $\phi_{i}^{(0)}$.

This is just like a Feynman diagram expansion; these "Witten Diagrams" also keep track of which insertions are at the boundary of $A d S$.

$$
\begin{aligned}
& \phi_{i}(z, x)=\int d^{D} x^{\prime} K^{\Delta_{i}}\left(z, x ; x^{\prime}\right) \phi_{i}^{0}\left(x^{\prime}\right)+b \int d^{D} x^{\prime} d z^{\prime} \sqrt{-g} G^{\Delta_{i}}\left(z, x ; z^{\prime}, x^{\prime}\right) \times \\
& \times \int d^{D} x_{1} \int d^{D} x_{2} K^{\Delta_{j}}\left(z, x ; x_{1}\right) K^{\Delta_{k}}\left(z, x ; x_{2}\right) \phi_{j}^{0}\left(x_{1}\right) \phi_{k}^{0}\left(x_{2}\right)+\cdots
\end{aligned}
$$

The diagram with three insertions at the boundary won't contribute to the vacuum 3-point function, since its contribution to the on-shell action will be at least quartic in ϕ^{0} (and the three-point function is obtained by acting with $\frac{\delta^{3}}{\delta \phi^{3}}$ on the action and setting $\left.\phi^{0}=0\right)$. The $\Delta \mathrm{s}$ that are running around are the weights of the primary operators for the scalar field insertions. The Gs and K s are just spatial propagators for our theory. $G\left(z, x ; z^{\prime}, x^{\prime}\right)$ is the bulk-to-bulk propagator, defined as the normalizable solution to

$$
\left(\square-m_{i}^{2}\right) G^{\Delta_{i}}\left(z, x ; z^{\prime}, x^{\prime}\right) \equiv \frac{1}{\sqrt{-g}} \delta\left(z-z^{\prime}\right) \delta^{D}\left(x-x^{\prime}\right)
$$

which is otherwise regular in the interior of $A d S$. The bulk-to-boundary propagator K is defined as:

$$
K\left(z, x ; x^{\prime}\right) \equiv \lim _{z^{\prime} \rightarrow 0} \frac{1}{\sqrt{\gamma}} \vec{n} \cdot \partial G\left(z, x ; z^{\prime}, x^{\prime}\right)
$$

where $\sqrt{\gamma}$ is the boundary metric and \vec{n} is the outward pointing normal at the boundary. The bulk-to-bulk propagator and bulk-to-boundary propagator are related by ${ }^{1}$:

$$
K^{\Delta}\left(z, x ; x^{\prime}\right)=\lim _{z^{\prime} \rightarrow \epsilon} \frac{\epsilon^{\Delta}}{2 \Delta-D} G^{\Delta}\left(z, x ; z^{\prime}, x^{\prime}\right)
$$

Of course, these have actual, real live expressions that can be put in terms of hypergeometric functions. Just in case you ever need them:

$$
\begin{aligned}
G^{\Delta}\left(z, x ; z^{\prime}, x^{\prime}\right) & =c_{\Delta} \eta^{-\Delta} F_{1}\left(\frac{\Delta}{2}, \frac{\Delta+1}{2} ; \Delta+1-\frac{\Delta}{2}, \frac{1}{\eta^{2}}\right) \\
\eta & =\frac{z^{2}+z^{\prime 2}+\left(x-x^{\prime}\right)^{2}}{2 z z^{\prime}}, \text { geodesic distance in AdS, } \\
c_{\Delta} & =\frac{2^{-\Delta} \Gamma(\Delta)}{(2 \Delta-D) \pi^{D / 2} \Gamma(\Delta-D / 2)} .
\end{aligned}
$$

To compute 3-point functions, we plug ϕ into the on-shell action $S[\phi]$. After an integration by parts, the action becomes:

$$
\begin{array}{rlrl}
S[\phi] & =\frac{1}{2} \sum_{i=1}^{3} \int d^{D+1} x \partial_{\mu}\left(\sqrt{-g} \phi_{i} \partial^{\mu} \phi_{i}\right)-\frac{b}{2} \int d^{D+1} x \sqrt{-g} \phi_{1} \phi_{2} \phi_{3}+\text { c.t. } \\
& = & I & +\quad I I
\end{array}
$$

[^0]The first term (I) vanishes by properties of the bulk-to-bulk propagator; this is true in general for $n \geq 3$. This is glossed over in many discussions of this calculation. We will not prove it directly, but it follows immediately from the result in $\S 3$ below. Anyway, the bulk term is non-zero and that's what we'll compute.

$$
I I=-\frac{b}{2} \int d^{D} x d z \sqrt{-g} \prod_{i=1}^{3}\left[K^{\Delta_{i}}\left(z, x ; x_{i}\right) \phi_{i}^{0}\left(x_{i}\right)\right]
$$

So with this in hand we can find the 3-point function by functional differentiation using the GKPW formula.

$$
\begin{aligned}
& \left\langle e^{\int \phi_{0} \mathcal{O}}\right\rangle=e^{-\int_{S U G R A} S\left[\phi_{0}\right]} \\
& \Rightarrow\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle_{\phi_{0}=0}=\left.\prod_{i=1}^{3} \frac{\delta}{\delta \phi_{i}^{0}\left(x_{i}\right)}(I I)\right|_{\phi_{0}=0} \\
& \langle Q_{1}\left(x_{1} \theta_{2}\left(x_{2}\right) \eta_{3}\left(x_{3}\right)\right\rangle_{\phi_{0}=0}=\prod_{i=1}^{3} \frac{\delta}{\delta \phi_{i}^{\prime}\left(x_{i}\right)}(\prod_{\phi_{0}=0}=\underbrace{}_{2} \\
& \left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle_{\phi_{0}=0}=b \int d^{D} x d z \sqrt{-g} \prod_{i=1}^{3} K^{\Delta_{i}}\left(z, x ; x_{i}\right)
\end{aligned}
$$

To see the structure of the 3-point function, we do some work on this integral. First, let's relabel the coordinates. Let $w^{A}=(z, \vec{x})$, so $w^{0}=z$ and $\vec{w}=\vec{x}$. We'll also define $(w-\vec{x})^{2} \equiv w_{0}^{2}+(\vec{w}-\vec{x})^{2}$. In this case, $x_{0} \equiv 0$. With these new coordinate labels, the bulk-to-boundary propagator becomes:

$$
K_{x}^{\Delta}(w)=\left(\frac{w_{0}}{(w-\vec{x})^{2}}\right)^{\Delta} .
$$

Now we do a change of variables, inversion. Let $w_{A}=\frac{w_{a}{ }^{\prime}}{w^{\prime}}$, where $w^{\prime 2}=w_{0}{ }^{\prime 2}+{\overrightarrow{w^{\prime}}}^{2}$. Now we make two claims:

1. $d^{D+1} w \sqrt{-g(w)}=d^{D+1} w^{\prime} \sqrt{-g\left(w^{\prime}\right)}$, since inversion is an isometry of AdS.
2. $K_{x}(w)=\left|x^{\prime}\right|^{2 \Delta} K_{x^{\prime}}\left(w^{\prime}\right)$. This is how we found K.

From these, we can find the transformation of the 3-point correlator.

$$
\Rightarrow G_{3}^{\mathrm{from} \mathrm{II}}\left(x_{i}\right)=\prod_{i=1}^{3}\left|x_{i}^{\prime}\right|^{2 \Delta} G_{3}^{\text {from II }}\left(x_{i}^{\prime}\right)
$$

Some more claims:

1. This is the correct transformation of a CFT 3-point function under inversion (large conformal transformation), denoted I.
2. Translation invariance is clear $T_{b}: x_{i}^{\mu} \rightarrow x_{i}^{\mu}+b^{\mu}$. We simply redefine the integration variable $\tilde{w}^{\mu}=w^{\mu}-b^{\mu}$ to remove the b^{μ} dependence.
3. Special conformal invariance $=I T_{b} I$, so that's good.
4. This must be of the required form, since rotational invariance is clear.

$$
G_{3}=\frac{c_{i j k}}{\prod_{i>j}\left(x_{i}\right)^{\Delta_{i j}}}
$$

This is determined up to $c_{i j k}$. To find $c_{i j k}$, need to do integral. See [DZF]. Translate \vec{x}_{3} to 0 . Then only two denominator factors in $G\left(x_{i}\right)$, and use Feynman parameters.
n-point functions proceed quite similarly. The only new complication is that in general one must evaluate some Witten diagrams with both bulk-to-boundary and bulk-to-bulk propagators (which don't go away).

3 Expectation Values

Next we make a valuable observation about expectation values \& the classical field. The reference is Klebanov-Witten, hep-th/9905104.

The solution in response to a source ϕ^{0} at the boundary (in some state) is:

$$
\left.\phi^{\left[\phi^{0}\right]}(z, x)\right] \rightarrow \lim _{z \rightarrow \epsilon} \epsilon^{\Delta_{-}}\left(\phi^{0}(x)+\mathcal{O}\left(\epsilon^{2}\right)\right)+\epsilon^{\Delta_{+}}\left(A(x)+\mathcal{O}\left(\epsilon^{2}\right)\right)
$$

In this case ϕ^{0} is the source. The function $A(x)$ is a normalizable fluctuation, determined by the source and choice of the propagator (not just to linear order in ϕ^{0}). CAREFUL: The term $\mathcal{O}\left(\epsilon^{2}\right)$ in the first term can be larger than the $A(x)$ in the second term! Use caution when calculating and expanding!

The claim is that:

$$
A(x)=\frac{1}{2 \Delta-D}\langle\mathcal{O}(x)\rangle_{\phi^{0}}=\frac{1}{2 \Delta-D}\left\langle\mathcal{O}(x) e^{\int \phi^{0} \mathcal{O}}\right\rangle_{C F T}
$$

Knowing the one-point function

$$
\langle\mathcal{O}(x)\rangle_{\phi^{0}}=\int \phi^{0}\langle\mathcal{O O}\rangle+\frac{1}{2} \int \phi^{0} \phi^{0}\langle\mathcal{O O O}\rangle+\cdots
$$

allows us to compute all other correlators. So this formula circumvents the need for the on-shell action $S[\underline{\phi}]$, and applies not just in the Euclidean case, but also in the real-time case. We'll give a diagrammatic "proof".

The value of the bulk field in response to some source can be represented perturbatively by the following collection of diagrams:

So we bring all our sources at the boundary into some blob, then connect the blob to our field using the bulk-to-bulk propagator at $\left(z^{\prime}, x^{\prime}\right)$. On the other hand, by the GKPW formula, the expectation value of the dual operator takes the form:

$$
\begin{aligned}
& \langle\varphi(x)\rangle_{\phi_{0}} \frac{\delta K p \omega}{\delta \phi \theta(x)}[\\
& \mathcal{O}(x)\rangle_{\phi^{0}} \stackrel{\text { GKPW }}{=}=\int d z^{\prime} d^{D} x^{\prime} K^{\Delta}\left(z^{\prime}, x^{\prime} ; x\right) \operatorname{BLOB}\left(z^{\prime}, x^{\prime}\right)
\end{aligned}
$$

Now we use our fact about the relation between the bulk-to-bulk and bulk-to-boundary propagators.

$$
G^{\Delta}\left(z, x ; z^{\prime}, x^{\prime}\right) \rightarrow \lim _{z^{\prime} \rightarrow \epsilon} \frac{\epsilon^{\Delta}}{2 \Delta-D} K^{\Delta}\left(z, x ; x^{\prime}\right)
$$

Putting this in, we find the relation

$$
\begin{aligned}
\lim _{z \rightarrow \epsilon} \phi(z, x) & =\int d z^{\prime} d^{D} x^{\prime} \frac{\epsilon^{\Delta}}{2 \Delta-D} K^{\Delta}\left(z^{\prime}, x^{\prime} ; x\right) \operatorname{BLOB}\left(z^{\prime}, x^{\prime}\right) \\
& =\frac{\epsilon^{\Delta}}{2 \Delta-D}\langle\mathcal{O}(x)\rangle_{\phi^{0}}
\end{aligned}
$$

To really work, we need the functional derivatives to be away from the support of the sources, e.g. take the ϕ_{i}^{0} to be δ-functions. But given that, this shows our claim.

4 Gauge Fields

This last bit is the beginning of the discussion on bulk, massive gauge fields. Consider a CFT with a conserved current J_{a}^{μ}, e.g. for $\mathcal{N}=4$ SYM there is a $U(1) \subset S O(6)$. This leads to massless gauge fields in AdS. Things coupling to conserved currents are massless. See pset \#4. We can imagine a term at the boundary of the form

$$
\begin{aligned}
S & \ni \int_{\partial(A d S)} A_{\mu}^{a} J_{a}^{\mu} . \\
\Rightarrow \partial_{\mu} J_{a}^{\mu}=0 & \Rightarrow \Delta=D-1 \Rightarrow m_{A}^{2}=0
\end{aligned}
$$

This allows us a nice check on the 2-point function of (charged) scalar operators (due to Freedman et al hep-th/9804058) as follows.

If under the $U(1)$ the scalar operators transform like:

$$
\begin{aligned}
\delta_{\Lambda} \mathcal{O} & =i \Lambda \mathcal{O}, \\
\text { and } \delta_{\Lambda} \mathcal{O}^{*} & =-i \Lambda \mathcal{O}^{*},
\end{aligned}
$$

then the 3 -point function

$$
\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right) J^{\mu}\left(x_{3}\right)\right\rangle \equiv G_{123}^{\mu}
$$

is related by a Ward Identity to the 2-point function

$$
\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right)\right\rangle
$$

The Ward Identity for a conserved current is:

$$
0=\delta_{\Lambda}\left[\int[D \text { fields }] e^{-S} \mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right)\right]
$$

The change in the action is:

$$
\delta_{\Lambda} S=\int \partial_{\mu} J^{\mu}(x) \Lambda(x) .
$$

Putting this all in the Ward Identity will give us something interesting. Let's define $x_{i j} \equiv x_{i}-x_{j}$, as it will come in handy.

$$
\begin{aligned}
\Rightarrow 0= & -\left\langle\left(\int d^{D} x_{3} \partial_{\mu} J^{\mu}\left(x_{3}\right) \Lambda\left(x_{3}\right)\right) \mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right)\right\rangle \\
& +\left\langle\left(i \Lambda\left(x_{1}\right) \mathcal{O}_{\Delta}\left(x_{1}\right)\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right)\right\rangle+\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right)\left(-i \Lambda\left(x_{2}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right)\right)\right\rangle
\end{aligned}
$$

This is true for a general $\Lambda(x)$, and in particular $\Lambda(x)=\delta^{D}\left(x-x_{3}\right)$.

$$
\Rightarrow \frac{\partial}{\partial x_{3}}\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right) J^{\mu}\left(x_{3}\right)\right\rangle=i\left(\delta\left(x_{13}\right)-\delta\left(x_{23}\right)\right)\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right)\right\rangle
$$

For a CFT, the form of a two scalar and one vector 3-point correlator is constrained to be of the form:

$$
\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right) J^{\mu}\left(x_{3}\right)\right\rangle=c \frac{1}{x_{12}^{2-D+2}}\left(\frac{x_{13}^{\mu}}{x_{13}^{2}}-\frac{x_{23}^{\mu}}{x_{23}^{2}}\right) \frac{1}{x_{13}^{D-2} x_{23}^{D-2}} \equiv c S^{\mu}\left(x_{1}, x_{2}, x_{3}\right) .
$$

Here, c is some constant that needs to be calculated. This gives as the divergence:

$$
\Rightarrow \frac{\partial}{\partial x_{3}}\left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right) J^{\mu}\left(x_{3}\right)\right\rangle=i\left(\delta\left(x_{13}\right)-\delta\left(x_{23}\right)\right) c \frac{2 \pi^{D / 2}}{\Gamma(D / 2)} \frac{1}{\left(x_{12}^{2}\right)^{\Delta}}
$$

On the gravity side of things, we just need to include a new bulk vector field, and have a complex scalar minimally coupled to our gauge field.

$$
S_{\mathrm{bulk}}=\int d^{D+1} x \sqrt{-g}\left[-\frac{1}{4} F_{A B} F^{A B}+\frac{\eta}{2} g^{A B}\left(\partial_{A}+i A_{A}\right) \phi^{*}\left(\partial_{B}-i A_{B}\right) \phi+m^{2}|\phi|^{2}\right]
$$

This is the usual charged scalar field theory with our vertex now dependent on the metric, rather than the usual flat case we're used to.

$$
\alpha i g^{A B}=i \frac{z^{2}}{L^{2}} \delta^{A B}
$$

The three-point function of interest gets a contribution from a single Witter diagram:

$$
\begin{aligned}
& \left\langle O_{\Delta}\left(x_{1}\right) \theta_{\Delta}^{*}\left(x_{2}\right) J^{\mu}\left(x_{3}\right)\right\rangle=A_{p_{0}\left(x_{2}\right) \sim\left(x_{0}\right)}^{\phi_{0}^{*}\left(x_{2}\right)} \\
& \left\langle\mathcal{O}_{\Delta}\left(x_{1}\right) \mathcal{O}_{\Delta}^{*}\left(x_{2}\right) J^{M}\left(x_{3}\right)\right\rangle=-i \int \frac{d^{D} w d w_{0}}{w_{0}^{D+1}} g^{A B}(w)\left[K^{\Delta}\left(w, x_{1}\right) \frac{\overleftrightarrow{\partial}}{\partial w^{B}} K^{\Delta}\left(w, x_{2}\right)\right] K_{A}^{M}\left(w, x_{3}\right)
\end{aligned}
$$

The $K^{\Delta}(w, x)$ s inside the parentheses are the usual scalar bulk-to-boundary propagators, while the K_{A}^{μ} outside is the bulk-to-boundary propagator for the gauge boson.

$$
\begin{aligned}
K_{A}^{M}(w, \vec{x}) & =c_{D} \frac{w_{0}^{D-1}}{(w-\vec{x})^{2(D-1)}} J_{A}^{M}(w-\vec{x}) \\
J_{A}^{M}(x) & \equiv \delta_{A}^{M}-2 \frac{x_{A} x^{M}}{x^{2}} \\
& =x^{\prime 2} \frac{\partial x_{A}}{\partial x_{M^{\prime}}} \text { with } x^{A}=\frac{x^{\prime A}}{x^{2}}
\end{aligned}
$$

This J_{A}^{M} is the Jacobian for the inversion transformation. This propagator solves the bulk Maxwell equations and $\rightarrow \delta^{D}(\vec{w}-\vec{x})$ as $w^{0} \rightarrow 0$.
[to be continued]

[^0]: ${ }^{1}$ The proof of this relation follows from "Green's second identity"

 $$
 \left.\int_{U}\left(\phi\left(\square-m^{2}\right) \psi+\left(\left(\square-m^{2}\right) \phi\right) \psi\right)\right)=\int_{\partial U}(\phi n \cdot \partial \psi+(n \cdot \partial \phi) \psi) \quad \forall \phi, \psi
 $$

 with $\phi=G, \psi=K$.

