8.821 String Theory Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) – Prof. J. McGreevy – Fall 2008

Problem Set 3

Conformal invariance, large N, geometry of AdS

- 1. Show that the conformal algebra of $\mathbb{R}^{p,q}$, with generators $P_{\mu}, C_{\mu}, M_{\mu\nu}, D$ and commutators given in lecture, is isomorphic to SO(p+1, q+1).
- 2. [much more optional than others]

Show that the generator of an infinitesimal conformal transformation in d > 2must be at-most quadratic in x. That is, convince yourself that (for d > 2)

$$\partial_{\mu}\epsilon_{\nu} + \partial_{\nu}\epsilon_{\mu} = \frac{2}{d}\eta_{\mu\nu}\partial\cdot\epsilon$$

implies that all third derivatives of ϵ must vanish. [I don't actually know if there is a simple way to do this.]

3. [more optional than others]

In a generic matrix quantum field theory, give some kind of proof by induction on the number of vertices and propagators that a planar vacuum diagram always contributes an amplitude of order N^2 .

4. Useful coordinates in AdS

Lorentzian AdS_{p+2} is the locus

$$-L^{2} = \eta_{ab} X^{a} X^{b} \equiv -(X^{p+2})^{2} - (X^{0})^{2} + \sum_{i=1}^{p+1} (X_{i})^{2} \qquad (\star)$$

inside $R^{p+1,2}$ with metric $ds^2 = \eta_{ab} dX^a dX^b$.

a) Show that in the *global coordinates* defined by

$$X^{p+2} = L \cosh \rho \sin \tau$$
$$X^0 = L \cosh \rho \cos \tau$$

$$X^{i} = L \sinh \rho \Omega_{i}, \quad \sum_{i=1}^{p+1} \Omega_{i}^{2} = 1$$

the induced metric on the locus (\star) becomes

$$ds^{2} = L^{2} \left(-\cosh^{2}\rho d\tau^{2} + d\rho^{2} + \sinh^{2}\rho \ d\Omega_{p}^{2} \right)$$

with $d\Omega_p^2 = d\Omega_i d\Omega_i$ the metric on the unit *p*-sphere, S^p . b) The *Poincaré patch* coordinates x^{μ} , *u* are defined via the relations

$$X^{p+2} + X^{p+1} = u - X^{p+2} + X^{p+1} = v X^{\mu} = \frac{ux^{\mu}}{L} .$$

Using the defining equation to eliminate v in terms of the other variables, show that the induced metric takes the form

$$ds^{2} = L^{2} \frac{du^{2}}{u^{2}} + \frac{u^{2}}{L^{2}} dx^{\mu} dx_{\mu}.$$

This metric looks nicer if we introduce $z \equiv \frac{L^2}{u}$:

$$ds^2 = L^2 \frac{dz^2 + dx^\mu dx_\mu}{z^2}.$$

The boundary of AdS is at z = 0. Think about what part of the AdS space is not covered by these coordinates. Hint: z runs only over positive values, since at $z \to \infty$, the timelike killing vector $\frac{\partial}{\partial x^0}$ becomes null.

c) Starting from the global coordinates, introduce $r \equiv L \sinh \rho$. Show that the metric takes the form

$$ds^{2} = -Hdt^{2} + H^{-1}dr^{2} + r^{2}d\Omega_{p}^{2}$$

with $H \equiv 1 + \frac{r^2}{L^2}$.

With the metric in this form, the angular part of the Einstein tensor $G_{\theta\theta}$ is linear in H and is proportional to $\partial_r(r^p\partial_r H)$. Using this information write down the metric for Schwarzschild- AdS_{p+2} , *i.e.* the spacetime that contains a black hole and is asymptotic to AdS at infinity.

5. Stereographic projection coordinates [more optional]

Let's think about the euclidean-signature hyperbolic space:

$$H_d = \{ -X_d^2 + \sum_{i=1}^d X^i X^i = -L^2 \} \subset \mathbb{R}^{d,1}$$

with metric $ds^2 = -dX_d^2 + \sum_{i=1}^d dX^i dX^i$. Introduce new coordinates ξ by

$$X^i = \xi^i \frac{2L^2}{L^2 - r^2}, \quad r \equiv \sqrt{\xi^i \xi^i}.$$

a) These coordinates arise by considering the line from a point P on the hyperboloid H_d to the point $Q = (-L, \vec{0})$; this line intersects the plane $X^{d+1} = 0$ at some point P' whose position in the *i* direction is ξ^i . Try to parse this last sentence, *i.e.* draw a figure.

b) Show that the induced metric on the hyperbolic space is

$$ds^{2} = \frac{4L^{2}d\xi^{i}d\xi^{i}}{(1-r^{2})^{2}}$$

6. Geodesics in AdS

a) Given a stationary observer at fixed ρ in global AdS, how long does it take (on his clock) for a radially-directed light-ray (*i.e.* a massless geodesic) to leave him, hit the boundary of AdS, and come back? (Assume that the observer is living in a circumstance where there are reflecting boundary conditions on the electromagnetic field.)

b) Examine the behavior of a massive geodesic in AdS (with zero angular momentum on the spatial sphere). Show that the motion is bounded away from the boundary of AdS.

7. Volumes and areas are not so different in AdS

In a fixed- τ slice of the global coordinates, consider the region $\rho \leq \bar{\rho}$. Show that

$$\lim_{\bar{\rho}\to\infty}\frac{A(\rho)}{V(\bar{\rho})}$$

is finite, where A and V are the surface area and volume inside the specified region.