MIT OpenCourseWare
http://ocw.mit.edu

8.821 String Theory

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Physics
String Theory (8.821) - Prof. J. McGreevy - Fall 2008

Problem Set 3

Conformal invariance, large N, geometry of $A d S$

1. Show that the conformal algebra of $\mathbb{R}^{p, q}$, with generators $P_{\mu}, C_{\mu}, M_{\mu \nu}, D$ and commutators given in lecture, is isomorphic to $S O(p+1, q+1)$.
2. [much more optional than others]

Show that the generator of an infinitesimal conformal transformation in $d>2$ must be at-most quadratic in x. That is, convince yourself that (for $d>2$)

$$
\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\frac{2}{d} \eta_{\mu \nu} \partial \cdot \epsilon
$$

implies that all third derivatives of ϵ must vanish. [I don't actually know if there is a simple way to do this.]
3. [more optional than others]

In a generic matrix quantum field theory, give some kind of proof by induction on the number of vertices and propagators that a planar vacuum diagram always contributes an amplitude of order N^{2}.

4. Useful coordinates in AdS

Lorentzian $A d S_{p+2}$ is the locus

$$
-L^{2}=\eta_{a b} X^{a} X^{b} \equiv-\left(X^{p+2}\right)^{2}-\left(X^{0}\right)^{2}+\sum_{i=1}^{p+1}\left(X_{i}\right)^{2}
$$

inside $R^{p+1,2}$ with metric $d s^{2}=\eta_{a b} d X^{a} d X^{b}$.
a) Show that in the global coordinates defined by

$$
\begin{aligned}
X^{p+2} & =L \cosh \rho \sin \tau \\
X^{0} & =L \cosh \rho \cos \tau
\end{aligned}
$$

$$
X^{i}=L \sinh \rho \Omega_{i}, \quad \sum_{i=1}^{p+1} \Omega_{i}^{2}=1
$$

the induced metric on the locus (\star) becomes

$$
d s^{2}=L^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega_{p}^{2}\right)
$$

with $d \Omega_{p}^{2}=d \Omega_{i} d \Omega_{i}$ the metric on the unit p-sphere, S^{p}.
b) The Poincaré patch coordinates x^{μ}, u are defined via the relations

$$
\begin{array}{r}
X^{p+2}+X^{p+1}=u \\
-X^{p+2}+X^{p+1}=v \\
X^{\mu}=\frac{u x^{\mu}}{L}
\end{array}
$$

Using the defining equation to eliminate v in terms of the other variables, show that the induced metric takes the form

$$
d s^{2}=L^{2} \frac{d u^{2}}{u^{2}}+\frac{u^{2}}{L^{2}} d x^{\mu} d x_{\mu}
$$

This metric looks nicer if we introduce $z \equiv \frac{L^{2}}{u}$:

$$
d s^{2}=L^{2} \frac{d z^{2}+d x^{\mu} d x_{\mu}}{z^{2}} .
$$

The boundary of $A d S$ is at $z=0$. Think about what part of the $A d S$ space is not covered by these coordinates. Hint: z runs only over positive values, since at $z \rightarrow \infty$, the timelike killing vector $\frac{\partial}{\partial x^{0}}$ becomes null.
c) Starting from the global coordinates, introduce $r \equiv L \sinh \rho$. Show that the metric takes the form

$$
d s^{2}=-H d t^{2}+H^{-1} d r^{2}+r^{2} d \Omega_{p}^{2}
$$

with $H \equiv 1+\frac{r^{2}}{L^{2}}$.
With the metric in this form, the angular part of the Einstein tensor $G_{\theta \theta}$ is linear in H and is proportional to $\partial_{r}\left(r^{p} \partial_{r} H\right)$. Using this information write down the metric for Schwarzschild- $A d S_{p+2}$, i.e. the spacetime that contains a black hole and is asymptotic to AdS at infinity.
5. Stereographic projection coordinates [more optional]

Let's think about the euclidean-signature hyperbolic space:

$$
H_{d}=\left\{-X_{d}^{2}+\sum_{i=1}^{d} X^{i} X^{i}=-L^{2}\right\} \subset \mathbb{R}^{d, 1}
$$

with metric $d s^{2}=-d X_{d}^{2}+\sum_{i=1}^{d} d X^{i} d X^{i}$. Introduce new coordinates ξ by

$$
X^{i}=\xi^{i} \frac{2 L^{2}}{L^{2}-r^{2}}, \quad r \equiv \sqrt{\xi^{i} \xi^{i}}
$$

a) These coordinates arise by considering the line from a point P on the hyperboloid H_{d} to the point $Q=(-L, \overrightarrow{0})$; this line intersects the plane $X^{d+1}=0$ at some point P^{\prime} whose position in the i direction is ξ^{i}. Try to parse this last sentence, i.e. draw a figure.
b) Show that the induced metric on the hyperbolic space is

$$
d s^{2}=\frac{4 L^{2} d \xi^{i} d \xi^{i}}{\left(1-r^{2}\right)^{2}}
$$

6. Geodesics in AdS

a) Given a stationary observer at fixed ρ in global $A d S$, how long does it take (on his clock) for a radially-directed light-ray (i.e. a massless geodesic) to leave him, hit the boundary of $A d S$, and come back? (Assume that the observer is living in a circumstance where there are reflecting boundary conditions on the electromagnetic field.)
b) Examine the behavior of a massive geodesic in $A d S$ (with zero angular momentum on the spatial sphere). Show that the motion is bounded away from the boundary of $A d S$.

7. Volumes and areas are not so different in AdS

In a fixed $-\tau$ slice of the global coordinates, consider the region $\rho \leq \bar{\rho}$. Show that

$$
\lim _{\bar{\rho} \rightarrow \infty} \frac{A(\bar{\rho})}{V(\bar{\rho})}
$$

is finite, where A and V are the surface area and volume inside the specified region.

