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Problem Set 5 
Finally, we can calculate 

1. Bulk vector fields. 

a) Use the inversion trick to show that 
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(where wA ≡ (w0, �w)A labels a point in the bulk of AdSD+1) is the bulk-to­
boundary propagator for a massless vector field, i.e. this object solves the bulk 
Maxwell equations, and → δD(w� − �x) as w0 → 0. Here 
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Show that 

JA
M (x) = x�2 ∂xA 

with x A = 
x�A 

∂xM 
� x2 

so this JA
M is the Jacobian for the inversion transformation.


b) Check that the gravity calculation of three point function


�OΔ(x1)OΔ(x2)J µ(x3)� 

(J µ is the conserved current to which the bulk gauge field AA couples) has the 
form required by conformal symmetry given in lecture. 

c) [extra bonus problem] Show that the form of the three point function above 
is determined by conformal invariance up to a constant. 

2. Relation between AdS propagators. 

Show that the bulk-to-boundary and boundary-to-boundary propagators for a 
scalar field in AdS are related by 

KΔ(z, x; x�) = lim
Δ+ − Δ− 

GΔ(z, x; z�, x�). 
z�→� �Δ 
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Hint: use ‘Green’s second identity’ 

√
g 

� 
φ(� − m 2)ψ − ((� − m 2)φ)ψ) 

� 
= 

√
γ (φn ∂ψ − (n ∂φ)ψ) ∀φ, ψ · · 

U ∂U 

with φ = G,ψ = K. The G appearing in this relation is defined to be the 
normalizable solution to the wave-equation-with-source � � 1

�x − m 2 G(z, x; z�, x�) = √
g
δD(x − x�)δ(z − z�) 

which is regular in the interior; K is defined to be the solution to the homoge­
neous wave equation which is regular in the interior and approaches 

lim KΔ(z, x; x�) = �Δ− δD x − x�. 
z �→

[Note: it is possible to show this using properties of the hypergeometric function 
appearing in the explicit expression for G; this proof is not so illuminating and 
requires actually knowing the exact solution] 

3. Wilson line with cusp. 

Use the AdS/CFT duality to compute the strong-coupling behavior of 

�W [v]�CFT , 

i.e. the vev of a Wilson loop (in the fundamental) associated to a curve de­
scribed by a ’v’ of opening angle θ, in a CFT with a AdS string dual. Show 
that the renormalized expecation value behaves like 

ren ln�W [v]� ∼ ln 
L√

4πλ Γ(θ)CFT 

where Γ is some function of the opening angle which vanishes as θ approaches 
π (this means that the discontinuity in the line is small). � and L are UV and 
IR cutoffs on the radial coordinate in AdS (i.e. � < z < L in the coordinates 
we have been using). 

4. Surface gravity. 

Compute the periodicity of y for which this metric is regular at z = zm (i.e. 
has no conical deficit): 

dz2 

ds2 = Ω(z) f(z)dy2 + + ds2 

f(z) other 
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�where f(z) is a function with a first-order zero at z = zm (i.e. ∂zf(zm) = 0 ) 
and Ω(z) is regular and non-vanishing at z = zm. 

If we think of y as imaginary time, this periodicity determines the temperature 
of the black hole, since finite temperature means periodic Euclidean time. 

a) Specialize your answer to the case of the euclidean Schwarzchild black hole 
in flat space, for which 

2GM 
f(z) = 1 − , Ω = 1, ds2 = z 2d�x 2 .other z 

b) Specialize your answer to the case of the euclidean AdS black hole (with 
planar horizon), for which 

z4 1 2f(z) ≡ 1 − , Ω = , dsother
2 = d�x . 

4 2z zm 

This geometry is also relevant to the model of confinement obtained by com­
pactifying a supersymmetric gauge theory on a circle with supersymmetry­
breaking (Scherk-Schwarz) boundary conditions. 

c) Show that you get the same answer by computing the ‘surface gravity’ κ of 
the horizon (the locus z = zm), which can be defined by 

1 acκ2 ≡ 
2
�aξ

b�cξ
d gbdg |z=zm 

where ξa is the tangent vector to the shrinking circle, ξ = ∂y. 
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