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8.821 F2008 Lecture 03: The decoupling argument; AdS/CFT 
without string theory, a discovery with hindsight 

Lecturer: McGreevy 

September 14, 2008 

Today: 
1. Backreaction and decoupling 
2. A bold assertion 
3. Hints, lore, prophesy 

Recall from last time that: 

• D-branes are subspaces where open strings can end. Nomenclature: Dp-branes have p spatial 
dimensions. 

• Light open strings are localized at the brane, and represent the fluctuations of the brane. 

• D-branes carry RR charges (which saturate Dirac quantization condition; this is necessary since 
we have both electric and magnetic charges). This can be seen by computing the amplitude for 
D-branes to emit RR gauge bosons; it is described by worldsheets as in the figure below. 

• The world volume theory on the brane is a YM theory. 

Dp 

Figure 1: The disk amplitude for the emission of a closed string by a D-brane.


The disk amplitude for the emission of a graviton gives the tension of the D-brane and is proportional 
to 

1 
gs 
−2+2h+b = . (1) 

gs 
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The backreaction on the geometry from N coincident D-branes is determined from Einstein equa
tions 

1 1 
8πGNT brane 2Rµν − Rgµν = µν ∝ gs · · N = gsN = λ, (2) 

2 gs 

where we used the fact that 

GN ∝ closed string coupling ∝ gs
2 . (3) 

At small λ, the backreaction is negligible and the physics is decribed by closed strings everywhere 
(these are excitations of empty space) plus open strings (YM +α′F 4 + · · · ) localized on the branes 
(these are excitations of the branes) in flat space. 

At large λ, the D-branes will gravitationally collapse into an RR soliton (black hole with the 
same charge). For p > 0, the black hole is not a point particle, but is also extended in p spatial 
dimensions. 

The case of p = 3 

The 3-brane will fill 3 + 1 dimensions (e.g., xµ=0,1,2,3). We can put the brane at y1 = · · · = y6 = 0, 
i.e, the R3,1 is at a point in the transverse R6 . Let r2 = 

� 
yi 

2 be the distance from the brane, then 
the metric of the brane will take the form 

R
6 

R
3,1 � �� � 

6 

ds2 = �
1 � 

ηµνdx
�� 

µdxν
� 
+ 

�

H(r) 
� 

dyi 
2 , (4) 

H(r) 
i=1 

and 
L2 

H(r) = 1 + 
r4 , dy2 = dr2 + r 2dΩ5, (5) 

where H(r) → 1 for large r and L is like an ADM mass. The RR F 5 satisfies 

F5 = N. (6) 
S5 at constant r 

The solution looks like an RN black hole (Figure 2). Far away (large r with H(r) = 1), the solution 
will asymptote to R9,1 . Near the horizon (r ≪ L with H(r) = L2/r4), the metric will take the form 
of an AdS5 × S5 

r2 dr2 r/2 

ds2 = 
L2 ηµνdxµdxν + L2 

r2 + L2 

r/2 
dΩ5 . (7) 

� �� � � �� � 
AdS5 S5 

The ultra-low energy excitations near the brane can’t escape the potential well (throat) and the 
stuff from infinity can’t get in. The absorption cross section of the brane goes like 

σ ∼ ω3L8 . (8) 
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Figure 2: 

The above conclusion can be reached in another way by noting that for low ω, the wavelength of 
the excitations will be too large to fit in the throat which has fixed size. 

Comparison of low energy decoupling at large and small λ (λ = Ngs) 

Large λ	 Small λ 

Throat states = IIB strings in AdS5 × S5 related by variation of λ , i.e, dual 4D N = 4, SU(N) YM 
−−−−−−−−−−−−−−−−−−−−−−−−→ 

+ + 
Closed strings in R9,1 Closed strings in R9,1 

Maldacena: Subtract “Closed strings in R9,1” from both sides. 

Matching of parameters 

The parameters of the gauge theory are gYM 
2 = gs (we will see that it is really a parameter in N = 4 

YM) and the number of colors N . By Gauss’s law 

⋆F5 = F5 = N (quantized by Dirac). (9) 
S5 S5 

The supergravity equations of motion relate L	 (size of space) and N (number of branes) as follows: 

GNF 5 F 5...Rµν = µ... ν ,	 (10) 

where 
GN ∝ g 2α ′ 4 , and F 5 F 5... ∝ N2 . (11)s	 µ... ν 
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Dimensional analysis then says Rµν ∝ L8 . This gives 

L4 

= gsN = λ (’t Hooft coupling). (12) 
α′2 

In terms of gravitational parameters, this says 

GN ∼ gs
2(α ′ )4 , L = N1/4G

N

1/2 
−→ GN ∼ 

1 
(in units of AdS raduis, i.e. at fixed λ). (13) 

N2 

A picture of what has happened here which can sometimes be useful is the Picture of the Tents. 
We draw the distance from the branes as the vertical direction, and keep track only of the size of 
the longitudinal and transverse directions as a function of this radial coordinate. Flat space looks 
like this: (Hence, tents.) The picture of the near-horizon limit looks instead like: 
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Figure 3: Left: Flat space. Right: AdS5 × S5 . Now it’s the Minkowski space IR3,1 which shrinks 
at r = 0, and sphere stays finite size. 

A Bold Assertion 

Now we back up and try to understand what is being suggested here, without using string theory.

We will follow the interesting logic of:

Reference: Horowitz-Polchinski, gr-qc/0602037


Assertion: Hidden inside any non-abelian gauge theory is a quantum theory of gravity.


What can this possibly mean??

Three hints from the Elders:


1) At the least it must mean that there is some spin-two graviton particle, that is somehow a

composite object made of gauge theory degrees of freedom. This statement seems to run afoul of

the Weinberg-Witten no-go theorem, which says:

Theorem (Weinberg-Witten): A QFT with a Poincaré covariant conserved stress tensor T µν


forbids massless particles of spin j > 1 which carry momentum (i.e. with Pµ = 
� 

dDxT 0µ 6= 0).


GR gets around this because the total stress tensor (including the gravitational bit) vanishes by

the metric EOM δg

δS 
µν 

= 0. (Alternatively, the ‘matter stress tensor’ which doesn’t vanish is not


general-coordinate invariant.)
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Like any good no-go theorem, it is best considered a sign pointing away from wrong directions. 
The loophole in this case is blindingly obvious in retrospect: the graviton needn’t live in the same 
spacetime as the QFT. 

2) Hint number two comes from the Holographic Principle [’t Hooft, Susskind]. This is a far-reaching 
consequence of black hole thermodynamics. The basic fact is that a black hole must be assigned 
an entropy proportional to the area of its horizon in planck units (much more later). On the other 
hand, dense matter will collapse into a black hole. The combination of these two observations leads 
to the following crazy thing: The maximum entropy in a region of space is its area in Planck units. 
To see this, suppose you have in a volume V (bounded by an area A) a configuration with entropy 
S > SBH = 

4G
A 

N 
(where SBH is the entropy of the biggest blackhole fittable in V ), but which 

has less energy. Then by throwing in more stuff (as arbitrarily non-adiabatically as necessary, i.e. 
you can increase the entropy) you can make a black hole. This would violate the second law of 
thermodynamics, and you can use it to save the planet from the Humans. This probably means 
you can’t do it, and instead we conclude that the black hole is the most entropic configuration of 
the theory in this volume. But its entropy goes like the area! This is much smaller than the entropy 
of a local quantum field theory, even with some UV cutoff, which would have a number of states 
Ns ∼ eV ( maximum entropy = ln Ns) Indeed it is smaller (when the linear dimensions are large!) 
than any system with local degrees of freedom, such as a bunch of spins on a spacetime lattice. 

We conclude from this that a quantum theory of gravity must have a number of degrees of freedom 
which scales like that of a QFT in a smaller number of dimensions. 

This crazy thing is actually true, and AdS/CFT is a precise implementation of it. 

Actually, we already know some examples like this in low dimensions. One definition of a quantum 
gravity is a generally-covariant quantum theory. This means that observables (for example the 
effective action) are independent of the metric: 

δSeff 
T µν0 = = . 

δgµν 

We know two ways to accomplish this: 
1) Integrate over all metrics. This is how GR works. 
2) Don’t ever introduce a metric. Such a thing is generally called a topological field theory. The 
best-understood example is Chern-Simons gauge theory in three dimensions, where the variable is 
a gauge field and the action is 

SCS = tr A ∧ dA + ... 
M 

(where the dots is extra stuff to make the nonabelian case gauge invariant); note that there’s no 
metric anywhere here. With either option (1) or (2) there are no local observables. But if you 
put the theory on a space with boundary, there are local observables which live on the boundary. 
Chern-Simons theory on some manifold M induces a WZW model (a 2d CFT) on the boundary of 
M . We will see that the same thing happens for more dynamical quantum gravities. 

3) A beautiful hint as to the possible identity of the extra dimensions is this. Wilson taught us that 
a QFT is best thought of as being sliced up by length (or energy) scale, as a family of trajectories 
of the renormalization group (RG). A remarkable fact about this is that the RG equations for the 
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behavior of the coupling constants as a function of RG scale z is local in scale: 

z∂zg = β(g(z)) 

– the RHS depends only on physics at scale z. It is determined by the coupling constant evaluated 
at the scale z, and we don’t need to know its behavior in the deep UV or IR. This fact is not 
completely independent of locality in spacetime. This opens the possibility that we can associate 
the extra dimensions raised by the Holographic idea with energy scale. 

Next we will make simplifying assumptions in an effort to find concrete examples. 
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